SAIC-94/1142

Global Association
Design Document and User’s Manual

R. Le Bras, H. Swanger; T. Sereno, G. Beall, R. Jenkins
and W. Nagy

November 17, 1994

19960304 026

Science Applications International Corporation
10260 Campus Point Drive
San Diego, California 92121

[DiSTRBUTION STATEMENT £ |

* Approved for P‘t}bﬁﬁc ’.flf{‘se: DTIC CTALITY TNCPEGTED 1
Distribution Unlmil

REPORT DOCUMENTATION PAGE

Form Approved
OMB No. 0704-0188

Public reparting burden fOr This COIECtiON of 1nfarmaLIon 15 estimated 10 average 1 ~our per response, includin
Jatherning and maintaining the data needed. and cOMOleting and review:ng the collection of information Send comments ve?
collection of information, iocluding wqggesions for reducing thes dburden 10 Wathinqgton Headauartersy Services, Onectorate

g the ume for reviewing nstructions, rarching existhing datd sourcey,
arding this burden estimate Or any other aspect of thy

of information Operations and Aeports, 1215 jetterson
Davis ghway, Sute 1204 Arlington, va 22102 4)02 and 10 the Otfice of Management and Budget, Paperwork Aeduction Project (0704-0188), Washington, 0OC 20503

1. AGENCY USE ONLY (leave blank) |2. REPORT DATE 3. REPORT TYPE AN[&

PR, —— -

DATES COVERED
eport

23 November 1994 Technical

4. TITLE AND SUBTITLE T

Global Association Design Document and User's Manual

6. AUTHOR(S)

R. LeBras, H. Swanger, T. Sereno, G. Beall, R. Jenkins
and W. Nagy

S. FUNDING NUMBERS

F08606-90-D-0005

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)

Science Applications International Corporation
10260 Campus Pt. Drive
“San Diego, CA 92121

8. PERFORMING ORGANIZATION

REPORT NUMBER

SAIC-94-1142

9. SPONSORING / MONITORING AGENCY NAME(S) AND ADDRESS(ES)

HQ Air Force Technical Applications Center
(HQ AFTAC/TTR)

1030 S. Highway AlA

Patrick AFB FL 32925-3002

10. SPONSORING / MONITORING

AGENCY REPORT NUMBER

11. SUPPLEMENTARY NOTES

123. DISTRIBUTION / AVAILABILITY STATEMENT

Approved for public release, Distribution unlimited

12b. DISTRIBUTION CODE

13. ABSTRACT (Maximum 200 words)

Treaty (CTBT).

This document describes the Global Association System for automatic interpretation of seismic
data to associate signals and locate seismic events. This system uses a hybrid method that inte-
grates techniques in generalized beam forming [e.g., Ringdal and Kverna, 1989; Taylor and
Leonard, 1992; Leonard, 1993] and expert systems [Bache e. el., 1993]. It is designed to handle
the large volumes of data that are needed to monitor compliance with a Comprehensive Test Ban

14, SUBJECT TERMS

Global Association GA
DEsign Document User's Manual

StaPro

SAIC-94-1142

15. NUMBER OF PAGES
67

16. PRICE CODE

17. SECURITY CLASSIFICATION [18. SECURITY CLASSIFICATION] 19. SECURITY
SECURITY ¢ SECUNITY CLA O RRY CLASSIFICATION | 20. LIMITATION OF ABSTRACT
UNCLASSIFIED UNCLASSIFIED UNCLASSIFIED Same as Report’
NSN 7520-01-280-5500

NS 4 WA 42 WUEY$ 2 WENEES TR TAAERR e

Standard Form 298 (Rev 2-89)
;;;K‘,o.xznc by ANSI Std 239-18

(This page intentionally left blank.)

Table of Contents

Page

1.0 INEPOAUCHION ceviverieerieeeieieeeeeteteeestestestestesseeseessesseesesssessesessnsssessesstessessesaesssssssesstosnesassnns 1
1.1 BacKGIOUNd ..ottt ns 1

1.2 Report OULHNe ..ottt 1

2.0 SYStem SUIMIMATY....ccemrerrrirrrnrerieinsensessenssesseses s sesss s sas s s s ssessssessrsssss s ansanses 3
3.0 System COMPONENLSocuvverirrimrirriniitrinitisniesnase s s s sssses e sssaens 4
3.1 Station Processing (StaPro)ccoeeviiiuniicrniinseiiicssisssssssssscseessssessasssessanns 5

311 AIQOTIAMNS ..ottt ettt 5

31,2 DAEA FLOTWeeneeeteeeceeeeeteeeaeeeceeceeeeeinsstesssssssssassssnesssssssessessesasssssssessnsansansasses 10

3.1.3 Major Software COMPONENEScvevverererrniriierereiiesesciserneissesesssssssesessns 13

3.2 GA SUDSYSLEIN c...oueininiiiniiiiitscsais s ssasassss et s s sas s s s n e 14
3.2.1 Grid Program (GACONS)c.eceueeeereneensiiciiiereseseseseseisiesei s sesssasassssesnes 16

3.2.1.1 AIGOVIAINS ..ottt e s s nens 16

3.2.1.2 DatA FIOUW..uueouiereeeeeereereeercerretessenieseeienesiessesssssessssasssssaessssassossssenss 18

3.2.1.3 Major Software COMPONENESceveeeeeeevereecrererriererereiriierrrssnsens 20

3.2.2 Main Association Program (GAASS0C)cuvvvueeeeeverrivererevinessseesesssssesenens 24

3.2.2.1 AIQOTIAMS ettt sss s s ssanes 24

3.2.2.2 DAEA FIOTW...vcoueeereeereeeereeeireeeeeneeeessssessessssssssssssssesssssssssnsssnssssnsonsses 30

3.2.2.3 Major Software COMPONENLSoevvevereririeiereeirirerienereseeeee e 30

3.2.3 Shared Libraries (IIDGA) .. eveeoeeeeeeeeeseeeetestetsesesaesseesseissssseessesssosesens 30

3.2.3.1 Data DesCription......ccuueeeverereeeieinieirevseerenssssssssssssssesssssssssssesns 30

3.2.3.2 Major Software COMPONENEScvveeeeeeriervrirrrerrisrernneisesssnenns 38

3.3 Expert System for Association and Location (EServer/ESAL)cccecuvveenenee. 41
3.3.1 Conflict RESOIULIONeveceeeirrvrrivrnrierrenessisesesssesese s ss s 42

3.3.2 Event RefiNement.........ccvevemuevicuieciricccisicicssiiissensesenessassss e sessssees 43
RELETEIICES. ... veverentieeieertet ettt et stere st ettt s e ae st e e ses e s e se s ente e e st sessesnenessensssassntesentsonennes 45
Appendix A: StaPro Parameter Descriptionsocoeueeeveieieeeininsinissinsecsiessnssisnnnens 46
Appendix B: GA Subsystem Parameter Descriptionsc.cccvveeeureeseinesnisesisceneenseeences 55
Appendix C: EServer /ESAL Parameter DesCriptionsc..cceueveveeeeieuereeeinsisinisienssssessaenes 64

Page i

List of Figures

Page

Figure 1. The current and planned configuration of the software for automated

association and 10cation are ShOWN.c..cceccevriciriiciicnininniiec s 2
Figure 2. This shows the high-level processing and data flow for the Global

Association System. Process flow is indicated by dashed lines, and data

flow is indicated bY SOIA INES.vuevecvevrrereererenserenaesesessessaesess s seses s sesessnes 4
Figure 3. This is a data flow diagram for StaPro. 6
Figure 4. StaPro processes data from the RDBMS for the maximum interval

shown above to avoid edge effects resulting from segmenting a long time

window. The user specifies the interval from t1 to t2, and StaPro

automatically determines the overlap interval, D, from user-parameters. 11
Figure 5. This is the Level 1 DFD for the GA Subsystem. The two functional units

at this level are GAcons and GASSOC.ccovveeeervecrermiminiiiiircsiecs e caesees 15
Figure 6. This shows the Level 1 DFD for GACORS.cocceiiiiiiiniiiiiciiniicicniececreeccnennens 18
Figure 7. This is the Level 2 DFD for GACODS. ...c..cocviiuininiiiciniiinicceecsteneiesssesessesasesnesnens 19
Figure 8. This diagram illustrates the data structures for grid cell-station information. 20
Figure 9. This illustrates the relationship between the theoretical and observed

slowness vectors in wavenumber (kx-ky) space. The match between these

two vectors depends on the length of the difference vector. ... 25
Figure 10. Schematic representation of the grid cell, its center, the stations

corresponding to the DRIVER and corroborating arrival, and the location

derived from these tWO arTiVAlS.cccecevceieireniiictiietnrrer et 26
Figure 11. Linkage between preliminary events and arrivals. Arrivals are numbered

from 1 to 7 and events from A to E. The same arrivals are repeated at the top

and bottom of the figure. Events include pointers to their associated arrivals,

and arrivals include pointers to events with which they are associated. 28
Figure 12. This is the Level 1 DFD for GAaSSOC.cccoeiiiiemininiiiitieteecieteee s 31
Figure 13. This diagram illustrates the data structures for GAassoC.cccevvcrercriincneciiicnnne 34

Page ii

Table 1:
Table 2:
Table 3:
Table 4:
Table 5:
Table 6:
Table 7:

List of Tables

Page
Major data StrucCtures in GACODSc.ccceerertrereririereetereieressesesesesseresesseseseessassesennas 21
Major MOQUIES I GACONS.cc.crveurierrreiieteestsaeteteeesesetess s eseseesesesaesessesesteseeseseenen 23
Major data Structures in GAASSOC.......ccvveeerrereereereerreriesrereeesessesresresessesssssesseessssasassnes 32
Major MOAUIES i GAASSOC ...cveeierriereerrierrreerreeseeeresteseeseseseeseseseesessesseseesestosesessesnen 35
Additional modules i GAASSOCcccceeuererreriereerreeereereereeereseeseeestessessessessessesassseens 36
Major modules in HDGA ..ottt ettt e 39
Additional modules in IBGA.........ccorminieeteieeeeeeette et 40

Page iii

1.0 Introduction

This document describes the Global Association System for automatic interpretation of seismic
data to associate signals and locate seismic events. This system uses a hybrid method that inte-
grates techniques in generalized beam forming [e.g., Ringdal and Kveerna, 1989; Taylor and
Leonard, 1992; Leonard, 1993] and expert systems [Bache et. el., 1993]. It is designed to handle
the large volumes of data that are needed to monitor compliance with a Comprehensive Test Ban
Treaty (CTBT).

1.1 Background

In 1993, discussions began concerning the design of the International Data Center (IDC) and U.S.
National Data Center (NDC) for the upcoming Group of Scientific Experts Third Technical Test
called GSETT-3 (for an overview, see Kerr [1993]). The GSETT-3 experiment will be the first
demonstration of a global monitoring system that addresses the CTBT problem. In the early dis-
cussions, the global network was envisioned to include as many as 60 primary stations (mostly
arrays) to provide continuous data, and up to 200 secondary stations to provide waveform seg-
ments upon request. The volume of data (~10 Gbytes per day) and number of events (300-400 per
day) were estimated to be approximately a factor of five to ten times greater than encountered
from existing global networks.

SAIC performed an engineering study to assess whether existing seismic monitoring systems
could be modified to handle these expected data volumes. The software components of the ADSN
and IMS were considered. The conclusion of this study was that the primary bottleneck would be
the automatic association and location program, ESAL [Bratt et al., 1991, 1994]. Performance
analyses indicated that ESAL’s execution time scaled roughly with the square of the detection
density. This was unacceptable since extrapolation to the estimated data volumes for a CTBT
monitoring network indicated that ESAL would not be able to process the data in real time.

To address this concern, SAIC proposed to replace ESAL with a new hybrid method. This
method splits the tasks currently performed by ESAL into separate modules that can be run in
parallel (Figure 1). The main association module is very similar to published generalized beam
forming techniques and to the unpublished technique used by the Australian IDC in the GSETT-2
experiment [Ken Muirhead, personal communication]. The main difference is that a model of the
probability of detection is used to significantly reduce the search space. Initial work on the new
hybrid method was supported by the Advanced Research Projects Agency (ARPA). That work
was continued under this AFTAC task order.

1.2 Report Outline

This document contains descriptions of the individual components of the Global Association Sys-
tem. Included are descriptions of the algorithms, data flow, and a summary of the major compo-
nents. The system currently includes ESAL for conflict resolution and event refinement. ESAL
has been described in detail by Bratt et al. [1991, 1994], and that level of detail will not be
repeated here.

Page 1

“UMOUS dT€ UOT)ed0] pue UONRIDOSSE Pajeuione 10§ a1emijos a3 Jo uonein3yuod pauue[d pue juazmd Y|,

W‘-“‘\-\-\\‘i\‘\“-“‘\-\‘\\‘\‘\ T TTEETYIy4

$JU9AS

T

TVSH

I[NPO PLID)

'

p3

“\\\\\\\\\\\\\\\

wWaIsAsqng vo

B, Ty TS T 090 O O TR TN O O O TSRSTFT]TRR T B =m0 0 O 0w

“~\\\\\\-‘\\\-~\\\‘\;‘.\‘\‘\\\‘\‘»\“‘\\\‘\\‘

I[MPOA

™ uonepossy ey

BuISsad01J uonv)IS

S[eAlLe

¥

w)SAS :o_aa_oowwﬁ. :33@

‘1 23

. SJUaA2

A

TVSH

UoywIOT pup
UONDID0SSY A0f
W23sAS 142dx5]

AT T TTCT T T T T T T TTTUCN

A

S[eAllIe

-85@2 JUILIN))

Page 2

B R _______ N

S S 2T 2T $TEEE 2T e W 2 TR 20 AT 020 WA 0 S 0

2.0 System Summary

The main components of the Global Association System are:

» StaPro - This module performs station processing. It analyzes detections and their features to
make preliminary seismic phase identifications. StaPro contains the same logic as ESAL for
this task, and it includes the ability to compute single-station location and magnitude hypoth-
eses. This information is used by GAassoc to screen detections from local events with mag-
nitudes less than a user-specified threshold. This module is considerably more compact than
ESAL, permitting each station to be processed independently and in parallel.

* GAcons - This module builds a global grid file containing the knowledge base for the associ-
ation process. Overlapping circular grid cells provide complete global coverage, including
depth cells in areas where deep seismicity is known to occur. The information contained in
the grid file includes travel time, slowness, and azimuth bounds, and information on the
probability of detection for each station in the network. A graphical user-interface is avail-
able to review and edit the grid values.

* GAassoc - This module identifies event hypotheses using an exhaustive search over all grid
cells. It uses the information in the grid file produced by GAcons to identify detections that
are consistent with a particular event hypothesis. The preliminary bulletin may contain con-
flicting associations (i.e., phases that are associated to more than one event hypothesis).
These conflicts are resolved by ESAL (see below).

* EServer/ESAL - These modules are used to resolve conflicts and refine the event hypotheses
formed by GAassoc. EServer is a data agent for ESAL that prepares ASCII input files from
data read from a commercial relational database management system (RDBMS). EServer
also writes events and associations determined by ESAL to the RDBMS.

The high-level processing and data flow are shown in Figure 2. GAcons is not included because it
is not part of the real-time processing. It produces a static grid file that must be recomputed only if
the network changes or modifications are made to the knowledge base. StaPro is triggered by the
completion of signal detection and feature extraction for a particular station. GAassoc performs
the global association after StaPro has completed for all stations. Information about detections
are transferred from the individual StaPro runs to GAassoc through the RDBMS using the CSS
3.0 database schema [Anderson et al., 1990]. GAassoc writes all event hypotheses and associa-
tions to the RDBMS. EServer reads these hypotheses, prepares the ASCII input data, and initiates
ESAL to resolve conflicts, refine event hypotheses, and produce the final bulletin. Finally,
EServer writes ESAL’s results to the RDBMS.

The Task Controller in Figure 2 could be an automated or manual process. In the simplest config-
uration, the Task Controller is a user that manually initiates each component after the previous
one has completed. In the ADSN and IMS, the Task Controller is a separate software module
called the Process Manager [Given et al., 1993]. However, the Task Controller does not need to
initiate ESAL since this is done automatically by EServer.

Page 3

‘\“‘\‘\\\\\\\\\\\\‘\\\‘\\‘\‘\“\‘\\\‘\\\\‘\\\\‘

\ Task Controller \
N i E
) s
StaPro \\
)
GAassoc

\\‘\‘\\\\‘

N

EServer

Y v
RDBMS

Figure 2. This shows the high-level processing and data flow for the Global Asso-
ciation System. Process flow is indicated by dashed lines, and data flow is indi-
cated by solid lines.

The Global Association System was developed on UNIX workstations under the Solaris 2.3 Oper-
ating System. The current version uses an Oracle™ 7.1.3 RDBMS. StaPro uses CLIPS Version
6.0 to provide run-time configurability of station-specific rules. CLIPS is a knowledge-based
macro language which is supported by NASA. ESAL is programmed in the ART (Automated
Reasoning Tool) expert system shell from Inference Corporation.

3.0 System Components

This section describes each major component of the Global Association System. For each new
component (StaPro, GAcons, and GAassoc), we provide a summary of the algorithms that are
used, the data flow, and a summary of the major software components. ESAL has already been
documented in detail by Bratt et al. [1991, 1994]. Therefore, Section 3.3 describes only the ESAL
tasks that are relevant for the Global Association System. The format of this description is consis-
tent with the existing ESAL documentation. The appendices give detailed descriptions of the
user-parameters for each module.

Page 4

3.1 Station Processing (StaPro)

StaPro determines the initial wave type of each detection (Teleseism, Regional P, Regional S, or
Noise), groups detections that appear to come from the same event, and determines a preliminary
identification of the seismic phase (P, Tx, Pn, Pg, Px, Sn, Lg, Rg, Sx, or N). In addition, single-sta-
tion location and magnitude are computed for groups that pass user-specified event confirmation
criteria. The major steps are illustrated in Figure 3.

Station processing is done by ESAL in the current IMS and ADSN systems. StaPro was written
in C and CLIPS to replace ESAL’s station processing. The main advantages:

» Improved station characterization
Parameters and rules can be customized for each station.

* Improved processing speed
Tests have shown that StaPro runs nearly three times faster than ESAL’s station processing
to accomplish the same task.

* Lower operating costs
StaPro uses CLIPS for knowledge-based processing which is available for a one-time nomi-
nal fee. ESAL requires a separate ART license for each machine.

3.1.1 Algorithms

This section summarizes the main algorithms used in StaPro. More detailed descriptions are pro-
vided by Bratt et al. [1991, 1994]. In the current version, CLIPS is only used for initial wave-type
identification. We plan to extend StaPro to also use CLIPS to implement station-specific rules for
phase identification. The following subsections refer to user-parameters that are described in
Appendix A. We use the following distinct font and style to identify these parameters: user-
parameters.

Initial Wave-Type Identification

The first task is to identify the initial wave type of each detection as T (teleseism), P (regional P),
S (regional S) or N (noise). StaPro allows station-specific rules (SSR) to be specified to supple-
ment or override the default method. The default method is the same as the one used by ESAL
[Bratt et al., 1991, 1994].

Station-Specific Rules. If station-specific rules are specified by the user (see the sta-rule-file
parameter), then they are applied before the default rules. If the return status is satisfactory and
the initial wave type is valid, then StaPro will proceed to the next detection. Otherwise, the
default method is used to determine the initial wave type (see below).

The SSRs are written in CLIPS and should either confirm (phase P) or restrict (not-p) one of the
valid wave types. In either case the conclusion must be asserted on the CLIPS fact list to make it

Page 5

W

S Ay R $ N 292N 2O 2w 20 AT 0 T 0 T 2 I 090 e 0 a0 .

O OO
Database Relatlons

' Static Files:
arrival Initial Wave Type Site File
‘‘apma . ” Neural Network Weights Flle .
P 5 * Station-specific Rules Station-specific Rules (opti)
amp c . fon- ifi op lona
detectlo_n Default Rules Default Rules ‘
Par-File Parameter.

_ Neural Network Log File

Database Relations:

arrival
sbsnr

Par-File Parameter.

Database Relations:

—arrival
apma-
sbsm:

Phase Grouping E——
L Static Files:
* Teleseismic s
* Local Site File
* Regional
Static Files:
Phase Identification Site File
» Bayesian Analysis Bayes File

Phase-Distance-Ranges
Travel-Time Tables

* Phase Prediction

Par-File Parameters

Database Relations:

arrival
sbsnr
mag: coefs

Event Location
& Magnitude
¢ Event Confirmation

¢ Location
¢ Magnitude

Static Files:
‘Site File
Travel-Time Tables

Par-File Parameters

arrival

iphase]

~stassid
auth
Iddate
slow
delslo
azimuth
delaz

Locator Log File

Generic Database
Interface (GDI)
stassoc assoc origin origerr
T .| L]

> for each detection

% only if 3-component station

Figure 3. This is a data flow diagram for StaPro.

Page 6

available for subsequent reasoning. The following is an example of an SSR that will restrict the
wave-type from being identified as P if the rectilinearity is less than a user-defined threshold:

;;; wave type cannot be P if rect < threshold

(defrule Sample-Sta-Rule-Not-P ;; comments
(program-state ssr-initial-wave-type) ;; required for IWT rules
(rect ?r) ;; rectilinearity from the RDBMS
(min-p-rect ?mpr) ;; user-defined threshold
(test (check-rect-range 7r)) ;; rectilinearity value is valid
(test (<= ?r ?mpr) ;; rectilinearity <= threshold
=>
(assert (status 1)) ;; status 1
(assert (not-p))) ;; wave type is not P

The left-hand side (LHS) of the rule consists of conditional elements, and the right-hand side
(RHS) consists of actions. An arrow (“=>") separates the LHS from the RHS. All conditions on
the LHS must be met before actions on the RHS will be executed. This example asserts (not-p) on
the fact list to restrict this detection from being identified as a regional P-wave. If no other SSRs
are fired, then the default rules will be used to identify the initial wave type subject to the con-
straint that it is not P. Similar restrictions can be applied for any of the valid wave types.

The next example is slightly more complicated. It is a rule to set the wave type to T if the rectilin-
earity is above a user-threshold and the period is less than a user-threshold.

i1, wave type is T if rectilinearity is high and period is low

(defrule Sample-Sta-Rule-T ;; comments
(program-state ssr-initial-wave-type) ;; required for IWT rules
(rect ?r) ;; rectilinearity from the RDBMS
(min-t-rect ?mtr) ;; user-defined threshold
(test (check-rect-range 7r)) ;; rectilinearity value is valid
(test (>= ?r ?mtr) ;; rectilinearity >= threshold
(per ?p) ;; period from the RDBMS
(max-t-per ?7mtp) ;; user-defined threshold
(test (check-per-range ?7p)) ;; period value is valid
(test (<= ?p ?mtp) ;; rectilinearity <= threshold

=>
(assert (status 1)) ' ;; status 1
(assert (phase T))) ;; wave typeis T

All SSRs must contain (program-state ssr-initial-wave-type) as a conditional element. This
will ensure proper processing flow of the rules. In addition, at least one of the rules must contain
the action which summarizes the overall completion status for the SSRs. This is done by placing
(status 0 | 1) on the RHS. A status of 1 represents satisfactory completion, and a status of O
means that completion was not satisfactory. Many helpful examples of SSRs exist in the default
rule file called StaPro-IWT.clp which is included in the StaPro software release. It can be copied

Page 7

and modified to meet station-dependent requirements. The CLIPS Reference Manual should be
referred to for further details.

Default Method. The default method of determining initial wave-type is two-tiered. A neural net-
work will be used if weights are available for the station in question (see the nnet-weights-file
parameter). Otherwise, default rules will be used. The neural network is preferable for three-com-
ponent stations since unreliable slowness estimates make it difficult to distinguish between P and
S waves. Sereno and Patnaik [1993] provide a detailed description of the three-stage neural net-
work that is used in StaPro for initial wave-type identification.

The default rules are used if neural network weights are not found or if the neural network returns
an error status. They are guaranteed to return one of the four initial wave-types. The rules are dif-
ferent for arrays than they are for three-component stations. For arrays the initial wave type is
based on the f-k slowness, and for 3-component stations it is based on polarization attributes and
frequency content [Bratt et al. 1991, 1994].

The last stage of initial wave-type identification is the possible revision of 7-fo-P if certain criteria
are met. This is not considered until all detections have been assigned an initial wave-type. Revi-
sion of T-fo-P can only occur when a compatible regional S arrival is found and P is an allowed
wave type. If the station is an array, then the velocity from f-k analysis must also be less than the
minimum teleseismic velocity (see the min-teleseism-velocity parameter). Details are provided
by Bratt et al. [1991, 1994].

Phase Grouping

The second major task in station processing is phase grouping. StaPro uses exactly the same
method as ESAL for this task. A brief description is given below, and details are provided by
Bratt et al. [1991, 1994].

After all detections have been assigned an initial wave type, they are collected into groups that
appear to come from the same event. The first arrival in each group is called the generator, and its
initial wave type must be either P or 7. Subsequent arrivals are added to the group on the basis of
their compatibility (based on azimuth and amplitude) with the generator. All members of a group
are assigned the same stassid value (stassid is a unique key in the RDBMS to identify station
association groups; see Anderson et al. [1990]). Noise detections are assigned a stassid of -1
indicating they don’t belong to any association group. Generators with no compatible detections
are also assigned a stassid of -1. Three categories of events are treated separately in phase group-
ing: teleseismic, local and regional. Teleseismic and local groups are found first, and their detec-
tions are removed from consideration for regional grouping. All regional P-wave detections that
were not previously assigned to a local group are potential generators for a regional group. Each
search uses special compatibility parameters which define limitations for that respective category
(see the grouping parameter descriptions in Appendix A). Any detection that is not assigned to a
teleseismic, local, or regional group is assigned a stassid of -1.

Page 8

Phase Identification

The third major task in station processing is preliminary seismic phase identification. The current
default implementation uses simple rules to identify teleseismic and local phases, and a more
sophisticated approach based on Bayesian analysis to identify regional phases. We plan to use an
approach similar to the one used in initial wave-type identification to enhance StaPro to allow
station-specific rules to override and supplement this default method.

Teleseismic and Local Phases. The preliminary phase identification is determined first for
teleseismic and local groups. For teleseismic groups, the first detection is identified as P and all
subsequent detections are identified as Tx (unknown teleseismic detections). Isolated teleseismic
detections (stassid = -1) are also identified as P. The generator of a local group will be identified
as Pg and any other P-type detections in that group will be identified as Px (unknown P-type
detection). The S-type detection in a local group will be identified as Lg unless its frequency is
low and it is close to the generator (see the min-Ig-frequency and max-rg-time parameters). In
that case it will be identified as Rg. Noise detections are assigned a preliminary phase identifica-
tion of NV.

Regional Phases. Regional generators will be identified as Pr if there are no S-type detections in
the group. Subsequent P-type detections in these groups will be identified as Px. Isolated P-type
detections are identified as Pn, and isolated S-type detections are identified as Sx (unknown S-type
detections). Regional groups with at least one S-type detection are more complicated. First, either
the first S-type detection in the group or the largest one is identified by Bayesian analysis (see
below). A similar analysis could be used for the generator (first P), but the current implementa-
tion just identifies it as Pr or Pg on the basis of S-P time. Once the generator and one S-type
detection are identified, other detections are identified by prediction (see below). Finally, any
remaining detections in the regional group are identified as Px or Sx.

A Bayesian analysis technique is used to identify either the first S-wave in a regional group or the
largest one [Bratt et al., 1991, 1994; Bache et al., 1993] based on a static table of empirically-
determined conditional probabilities (see the bayes-file parameter). The Bayesian analysis will
estimate probabilities for all possible S-type regional phases (Sn, Lg, Rg, and Sx). The regional
phase having the highest probability is the most-likely candidate, but additional constraints are
also applied [Bratt et al., 1991, 1994]. The conditional probabilities are based on velocity, hori-
zontal-to-vertical power ratio, S-P time, period, and context with respect to other S phases. The
context categories are: only-S, first-S-of-two, first-S-of-many, or largest-S (currently not used).
The static table can include the conditional probabilities for multiple stations, and a default table
can be specified for uncalibrated stations.

The prediction procedure begins by estimating a preliminary event location using the arrival time
and azimuths of the genmerator and the S-type detection whose phase identification was deter-
mined by Bayesian analysis. The arrival time of one of the remaining regional phases (Pg, Lg, Rg)
is then predicted. Three conditions must be met for a phase to be predicted: 1) the phase cannot
already exist in the association group, 2) there must be an arrival in the association group with a
compatible initial wave-type, and 3) the event depth and distance must be consistent with con-
straints for the phase being considered (see the phase-distance-file parameter). If an arrival is

Page 9

found that is consistent with the prediction, then its phase is identified and it is used to refine the
preliminary event location. The procedure continues until all valid regional phases have been con-
sidered.

Event Location and Magnitude

The final task in station processing is to compute a single-station event location and estimate local
magnitude for association groups that satisfy a user-specified event confirmation criteria. These
are used by GAassoc to screen detections from small local events.

Event confirmation is based on a weighted-count of defining observations (arrival time, azimuth,
and slowness). It uses individual weights for each type of defining observation; separate weights
are available for primary arrival times, secondary arrival times, array azimuths and slownesses,
and three-component azimuths and slownesses. An association group passes the event confirma-
tion test if its weighted-count exceeds a user-defined threshold (see the event-confirmation-
threshold parameter). Event locations are determined for these groups, and the weighted-count
test 1s applied again. This is done because the locator algorithm may reduce the number of defin-
ing attributes causing a reduction of the weighted-count. Finally, an additional confirmation test
based on the size of the error ellipse is applied (see the semi-major-axis-threshold parameter).

Local magnitudes are estimated for confirmed events using the method described by Bache et al.
[1991] in their Appendix A. Magnitude coefficients must be available for the regional phases
involved (see the mag-coefs-table parameter). The local magnitude computed by StaPro is a
weighted average of individual regional phase magnitudes. The phase magnitudes are based on
the short-term-average amplitude measured on a 2-4 Hz incoherent beam (arrays) or vertical
channel (three-component stations).

3.1.2 Data Flow

The data flow through StaPro is summarized in Figure 3. In this section, we describe how the
input and output data are represented. Input data for StaPro come from parameter files, database
relations, and static files. Separate sections are included below for each of these representations.
Data are initially read into a global data structure. This structure is updated as results from the
major modules are determined. StaPro’s final results are written to the RDBMS through our
Generic Database Interface, or GDI [Anderson et al., 1994]. Some output may also be written to
ASCII log files if desired. Before describing each data representation, the StaPro’s process con-
trol is summarized

Process Control

StaPro has four input parameters that define the process control: station name, start time, end
time, and duration (either duration or end time are specified, not both). During normal operations
the Task Controller initiates StaPro for a given station and time interval, ¢/ to 2. However, to
accurately interpret data in this interval, StaPro must read data beyond it. Therefore, StaPro has
been configured to automatically process data in overlapping windows to avoid the edge effects
that would result from processing adjacent windows. The amount of overlap is determined from

Page 10

six phase grouping parameters that control the maximum duration of a group of associations (see
Appendix A). This overlap guarantees that StaPro’s final results for an interval will not depend
on how that interval was segmented.

Figure 4 shows how StaPro sets up its processing intervals. The user (or Task Controller) speci-
fies the interval to process as ¢] to 2. StaPro reads data from the RDBMS for an extended inter-
val between t/-2A-met and 12+2A+tnet. This is called the query interval in Figure 4. The time,
tnet, is added only to form contextual input parameters for the neural network used in initial
wave-type identification [Sereno and Patnaik, 1993]. 1t is specified in the neural network weights
table and is zero if the neural network is not used. However, all new StaPro processing is
restricted to the maximum processing interval shown in Figure 4. The primary overlap interval, A,
is determined from user-specified phase grouping parameters. It is defined as the maximum time
interval between phases that belong to the same stassid group.

- query interval >
maximum processing
interval
minimum processing
) l « interval » l
. Inet A A ' A A | et
I Ml Ml | W R
| 1 1 1 I 1 i i fime
t1-2A tl 2 12+2A —

Figure 4. StaPro processes data from the RDBMS for the maximum interval
shown above to avoid edge effects resulting from segmenting a long time win-
dow. The user specifies the interval from ¢1 to {2, and StaPro automatically
determines the overlap interval, A, from user-parameters.

StaPro immediately dissolves all previous station processing results for detections in the mini-
mum processing interval shown in Figure 4. All of these detections will be reprocessed. It also
dissolves previous results for detections in the surrounding intervals z7-2A to tI-A and £2+A to
12+2A that are part of a stassid group that was dissolved in the minimum processing interval.
StaPro then processes the entire maximum processing interval, but skips detections if their
stassid group was not dissolved.

Parameter file

A StaPro parameter file containing station-dependent processing parameters and general control
parameters is required. It contains the control parameters described in the previous section, data-

Page 11

base parameters, and numerous processing parameters which may be considered to be station-
dependent (these are the Par-File Parameters in Figure 3). The StaPro manual page provides a
complete description of all parameters and their default values (Appendix A). Station Processing
can be customized by creating separate parameter files for each station.

Database

Standard CSS 3.0 database relations and their IMS Extensions contain the detections and their
features needed by StaPro [Anderson et al., 1990; Swanger et al., 1993]. These include arrival,
apma, detection, amp3c, sbsnr, and mag_coefs. StaPro also writes its output to standard
CSS 3.0 database relations (Figure 3). It updates the arrival table, and writes new records to the
stassoc, assoc, origin, and origerr tables.

The database information read by StaPro is assembled into a global data structure. Several data-
base queries are required to fill this structure. A main query obtains arrival information by joining
the arrival, apma and detection tables for the station requested. Next, horizontal-to-vertical
power ratios are obtained from the amp3c¢ table joined with the arrival table using similar con-
straints as the main query. This query is executed whether or not the initial wave-type neural net-
work is used (see the nnet-weights-file parameter). If it is used and the horizontal-to-vertical
power ratios are not available, then the neural network will exit with an error status causing the
default rules to be used to identify the initial wave-type. The next query obtains the short-term
average amplitude measurements from the sbsnr table for the user-specified channel (see the
sbsnr-chan parameter). If these are not available, amplitudes from the arrival table will be used
instead. The arrival and sbsnr tables are joined using similar constraints as the main query.

A separate structure is populated if the neural network is used to identify initial wave type (see the
nnet-weights-file parameter). This structure contains contextual information required by the neu-
ral network for each arrival. The query reads the arrival table for all arrivals within the query
interval shown in Figure 4.

Magnitude correction coefficients are read from the mag_coefs table for the station and channel
specified. These coefficients are used in determining the local magnitude. Magnitude is not com-
puted if the coefficients are not available.

Static files

Static input files used by StaPro include site information, neural network weights, default rules,
optional station-specific rules (SSR), conditional probabilities for Bayesian analysis, allowable
distance and depth ranges for seismic phases, and travel time tables. Optional output files are the
neural network and locator log files. All of these are ASCII files.

The site file contains information about each station (e.g., location, station type). This information
is also in the RDBMS, so we plan to eliminate the static site file in the next version of StaPro.
Site information for the station being processed is stored in a global site structure. This file is cur-
rently required input for StaPro.

Page 12

Three of the static files are specific to initial wave-type identification: neural network weights,
default rules, and SSRs. Of these, only the default rules are required input for StaPro (although
we recommend using the neural network for processing data from three-component stations). The
default rules and SSRs are stored in CLIPS files. The default rules file (StaPro-IWT.clp) is
included in the StaPro software release. This file should not be modified, but it provides valuable
examples that can be used to develop SSR files. The neural network weights file can include
weights for multiple stations.

Three of the static files are used for phase identification: the conditional probabilities, distance
and depth restrictions for seismic phases, and travel time tables. The conditional probabilities are
used in the Bayesian analysis to identify regional S phases. Tables for multiple stations can be
stored in the same file. The distance and depth restrictions for seismic phases are used during
phase prediction. The travel time tables are used for prediction and event location. The travel time
tables are stored as separate files for each phase. They are required input for StaPro.

3.1.3 Major Software Components

This section lists the major software components of StaPro with a short description and the name
of the file where they can be found. StaPro has been developed and tested on UNIX workstations
under the Solaris 2.3 Operating System using Version 7.1.3. of Oracle™ and Version 6.0 of
CLIPS. The major shared libraries used by StaPro are libloc, libgdi, libdb30ga, and libpar. The
StaPro manual page is given in Appendix A.

main (int argc, char **argv)

main.c

Main() initializes CLIPS and the database, and it controls the flow of StaPro processing. A global
parameter structure holds all user-parameters. A flag stating whether or not the neural network
weights are available (e.g. wts_available) is set. This is needed for querying the database and for
the CLIPS fact list. The processing flow consists of: querying the database, pre-processing, initial
wave type, grouping, regional phase identification, event location and magnitude, and storing
results in the database.

select_detection_data (double delta_t)

select_detection_data.c

This function builds a global data structure (data) by querying the arrival, apma, detection,
amp3c, and sbsnr database tables. It also builds a time list data structure (tlist) if the neural net-
work weights are available (wts_available) which is used to determine the contextual attributes
for the neural network. The mag_coefs database table is queried and coefficients are stored in
their own structure (mc). Finally, the static site file is read and stored in its structure (site).

iwt (void)

iwt.c

This function loops over each arrival. It asserts high-level facts, database facts, and user parame-
ter facts onto the CLIPS fact list. Then, it begins firing the CLIPS rules for initial wave-type iden-
tification.

Page 13

grouping (void)

grouping.c

This function identifies consistent groups of arrivals. All arrivals are examined for teleseismic
groups. Phases (P, Tx) are assigned and stored in the global data structure (data) as the groups are
formed. Similarly, local groups are found and assigned local phases (Pg, Lg, Rg). Lastly, regional
groups are identified. However, regional phases are not assigned here unless the group is degener-
ate (i.e., does not contain any S phases). In this case, phase assignment is limited to Prn for the
generator and Px for coda phases. Other regional groups will have their phases assigned during
the Regional Phase Identification process. A stassid is assigned to all arrivals of the same group.
The stassid is saved in the global data structure.

regional (void)

regional.c

This function determines phase types for regional groups. Bayesian analysis is used to determine
the first or largest S phase. The generator is assigned phase Pn. A phase prediction procedure is
used to identify other phases (Pg, Lg, Rg). Default phases (Px, Sx) are assigned to the remaining
arrivals in a regional group. Phase identifications are stored in the global data structure (data).

locate (void)

locate.c »

This function computes a single-station location and average local magnitude for events which
pass the event confirmation criteria.

update_database (void)

update_database.c

This function writes StaPro conclusions to the database. Real values for stassid and orid are
obtained from the database to replace the ones generated internally by StaPro. This is done prior
to any database writes so that a clean database rollback can be achieved if a premature exit is
required. The iphase, stassid, [ddate and auth fields of the arrival table are updated from infor-
mation stored in the global data structure (data). In addition, azimuth, delaz, slow, and delslo
are updated in the arrival table for three-component stations. Database deletes are made from the
stassoc, assoc, origin, and origerr tables. The dissolved stassid list is used to delete old
stassids from the stassoc table. Similarly, the stassid list is used to delete old orids which
might exist in the assoc, origin, and origerr tables. Finally, new tuples are inserted into the
stassoc, assoc, origin and origerr tables. These tuples are built from information stored in
the global data structure (data), and assoc, origin, and origerr structures.

3.2 GA Subsystem

The GA Subsystem includes two programs: GAcons and GAassoc. In addition, libGA is a library
that includes subroutines and structures common to these two programs. The library provides the
interface to a file containing grid information written by GAcons and used by GAassoc. The user
may choose to divide the grid into several sectors and process them in parallel to accelerate the
computations in GAassoc. GAcons builds one file for each sector specified by the user. GAassoc
uses the grid information and the arrival data read from the database to form a list of preliminary
events which is then passed to ESAL for further conflict resolution and event refinement.

Page 14

The top-level view (Level 0) of the GA Subsystem was shown in Figure 2. This showed the inter-
action with the RDBMS and other elements of the Global Association System. The DFDs (Data
Flow Diagrams) in this section decompose the Level 0 diagram into more detailed functional ele-
ments. The consistent notation used in these diagrams provides continuity between them. Figure 5
shows the Level 1 decomposition. GAcons and GAassoc are numbered 1 and 2. Later sections
show the Level 2 decomposition of 1 (GAcons) and 2 (GAassoc) into functional elements 1.1,
1.2, etc. and 2.1, 2.2, etc. Level 3 decompositions are also provided. These require three digits to
name each unit, and this convention allows the individual modules to be traced back to the previ-
ous level. At any level, the DFD provides a view of the system as an interaction between modules.
The bubbles represent functional elements of the system at the specific level of decomposition.
The solid arrows indicate data exchange between modules and data stores. The crosshatched

arrows indicate data input by the user.)

GAassoc user input GAcons user input
\
\ \
‘ \
z \
] \
. Y Travel Time Tables N
arrival db table N \
3
\.\ : L}
’;\ 5 Seismicity
\
Preliminary
Event
Forming Grid Builder

GAcons

GAassoc
2.

1.

Preliminary
Events
PrecO-IIlPllteC'1 static db tables
Beam point-station
information

Figure 5. This is the Level 1 DFD for the GA Subsystem. The two func-
tional units at this level are GAcons and GAssoc.

The following three subsections provide detailed explanations of the individual parts of the GA
Subsystem. An explanation of the algorithms, data flow, and major software components are pro-

vided.
Page 15

3.2.1 Grid Program (GAcons)

GAcons builds a global grid of precomputed information for use in the association program. The
first task of GAcons is to establish a quasi-uniformly distributed set of points on a sphere. The
points represent the centers of circular surface cells providing a complete overlapping coverage of
the Earth. The grid is completed by adding depth cells with their center at the same latitude and
longitude as the surface cells and their depth at user-specified values. The depth cells are added in
areas where deep seismicity is known to occur.

For each cell, GAcons establishes a list of stations that have a non-negligible probability of
detecting the earliest arrival for an event within the cell. The probability level is specified by the
user (e.g., one chance in a hundred). Events are simulated for each grid cell. Their locations are
distributed uniformly within the cell volume and their magnitudes are distributed according to a
user-specified recurrence rate (i.e., b-value). A network probability subroutine (probdet) deter-
mines the probability of detecting these events at each station in the network based on attenuation
models and noise estimates. For each simulated event, the station that records the earliest arrival
is added to the list of “first-arrival stations.”

Information about each grid cell-station pair is computed for all stations in the network. This
includes information that pertains to all phases in the cell (e.g., epicentral distance) and informa-
tion that pertains to a specific phase (e.g., travel time). A description of the precomputed informa-
tion and the structure of the GAcons grid file is given in Section 3.2.3.

3.2.1.1 Algorithms

The algorithm used by GAcons to build the global grid is divided into three sections below: sur-
face cells, depth cells, and “first-arrival stations.” User-parameter referred to in this section are
described in detail in Appendix B. We use the following distinct font and style to identify these
parameters: user-parameters.

Surface cells

Grid points are established on the Earth with a quasi-uniform spacing. The grid points are distrib-
uted along parallels. The spacing in latitude is uniform and the number of latitude lines between 0
and 90 degrees computed as:

Nlat = %290° (1)
where A is the average grid spacing provided by the user in degrees (see the grid_spacing param-
eter). The square-root of two provides a large enough density in latitude to ensure complete cover-
age. There will be a point at the North pole and the South pole.

The points are spaced uniformly for each latitude line. The number of points and the uniform

spacing between them are computed using equations (2) and (3) where A is the latitude. The grid
is built by starting with uniformly distributed points on the equator with one point at longitude=0.

Page 16

On the next latitude line, a point is placed at longitude, 8(0)/2, exactly half-way in longitude
between two points at the equator. This process is repeated for each latitude line, where one point
is placed exactly half-way between two points at the latitude directly below. At lower latitudes,
this results in a quasi-quincunx pattern rather than a square grid.

N =1+M 2)
_ 180° 3
5N =y €))

The radius of each surface cell is set to the latitude spacing. This provides a sufficiently large
overlap to ensure complete coverage of the Earth.

The current heuristic approximates uniformity. One improvement would be to optimize the set of
grid points by minimizing the difference between segments joining points at a latitude and points
at the previous latitude. An even more elaborate optimization would consist of solving the global
problem at once rather than latitude by latitude. However, we believe that the final outcome of the
association process is not heavily-dependent on the specific gridding scheme used.

Depth cells

A file containing events recorded over many years from a published global seismic bulletin (e.g.,
the Preliminary Determination of Epicenters) guides the establishment of grid cells at depth. The
user provides a set of depths and widths for the depth cells (parameters depth_points and
depth_widths). Every surface location is included in the grid, and the depth cells below are
included if they satisfy a user-specified threshold on the event density from the seismicity bulletin
(min_num_events_per_10sq_deg). The cell shape is a portion of a cone truncated at the lower
and upper depth of the cell. The file name that contains the seismicity information is specified
through the user-parameter event_file.

First-arrival stations

A list of stations having a non-negligible probability of detecting the earliest arrival in the net-
work is established for each grid cell. This is done by Monte-Carlo simulation.

The number of events to be simulated for each grid cell is specified (nevents). Only events that
are detected at a minimum number of stations (nsta_def) are included in the count. Events are
randomly generated within grid cells for magnitudes between a minimum magnitude (min_mag)
and a maximum magnitude (max_mag). A seismicity b-value drives the magnitude distribution
of events between these bounds. The event locations are distributed uniformly within the grid cell
volume. The b-value may be set on a cell by cell basis, but it is currently set to 1.0 for all cells.

For each simulated event, the probability of detection at each station is estimated using the event
magnitude and location, a model of the attenuation, and the noise characteristics at the station.
The station-specific noise level and signal-to-noise ratio threshold are read from the siteaux
table in the RDBMS [Swanger et al., 1993]. A random draw at every station based on the proba-

Page 17

bility of detection simulates whether or not the station detected the event. If a station detects the

earliest arrival for more than a user-specified percentage of the events (percent) then it is added
to the list of “first-arrival stations.”

3.2.1.2 Data Flow

The data flow diagrams describing the exchange of data between different modules within
GAcons are shown in Figures 6 and 7. Figure 6 illustrates the two main components of GAcons,
namely the Static Grid Builder and the Precomputed Table Builder (including first-station and
travel time information for each phase). Figure 7 is a further decomposition of the precomputed

grid information component. Major modules are shown on the diagrams next to each functional
element.

Phase list

Network name

Grid spacing

’ \
/ \
: :
!' static db tables :

L/ . y

A Travel Time Tables :

% N

0’ :
’ & ———
‘0
‘0

*

\d
‘& Seismicity
Precomputed

Table builder

Static Grid

12 Builder

1.1
[GAgrid_build()]
[GA_depth_samples()]
[GAgrid_subsmp()]

Grid points

Precomputed
Beam point-station
information

Figure 6. This shows the Level 1 DFD for GAcons.

Page 18

static db tables

Extract
station
information

1.2.1

[GAstation_info()] Network info

Travel Time Tables

Grid points

Compute

Build)
List of first BPég}?;lon
artival information

stations
122

123

[GA_beam_point_stations()]

[GA_first_arrival_stations()]

Beam point structures

[GA_file()]

Precomputed
. Beam point-station
information

Figure 7. This is the Level 2 DFD for GAcons.

T EEEE R $ A $TEIEE 92T 2SI 292G 290 a0 909 T 2 I 2Ty S 0 Emme 0 aaae
\
i H

Page 19

3.2.1.3 Major Software Components

This section presents tables with the standard ANSI C implementation of the major data struc-
tures, subroutines, and database tables used in GAcons. The data structures are described in Table
1and the relationships between them is shown in Figure 8. The major software components of
GAcons are described in Table 2.

prev /' next
Beam point | |e ° ol e
next
Stations_First_arrivals _ . next
* ° /
next next next next
[) ® P Py
Stations
[] ® o P
next next next

Phases /
° ° °

Figure 8. This diagram illustrates the data structures for grid cell-station information.

The Beam_pt and Grid_pt structures are instantiated once per grid point. Grid_pt contains the
descriptive and geographical information for the grid points. Beam_pt links the Grid_pt struc-
tures to all the station information for that grid point.

The Sta_pt structure is instantiated once per grid point-station pair. A NULL-terminated linked
list of Sta_pt structures is attached to the Beam_pt structure.

The Phas_Inf structure is instantiated once per grid point-station-phase triplet. A NULL-termi-
nated linked list of Phas_lInf is attached to each Sta_pt.

The First_Sta structures contain a pointer to each “first-arrival station.” They are organized in a
linked list tied to each Beam_pt.

GAcons uses the Generic Database Interface (GDI) for all transactions with the RDBMS [Ander-
son et al., 1994]. The database tables read by GAcons are affiliation, site, and siteaux [Ander-
son et al., 1990; Swanger et al., 1993]. These contain site-specific information for a given
network.

Page 20

Table 1: Major data structures in GAcons

List of the major data structures in GAcons with a short description and the name of the file

where they reside.

Structure name and definition.

typedef struct grid_pt Grid_pt;

struct grid_pt {
int index;

float lat;

float lon;

float depth;

float lower_depth_bound;
float upper_depth_bound;
float radius ;

float b_value ;

Grid_pt *next ;

Grid_pt *prev ;

5

typedef struct beam_pt
Beam_pt ;

struct beam_pt

{
Grid_pt *loc ;

First_Sta *first_sta 3

StaPt *stpt ;
Beam_pt *next ;
Beam_pt *prev ;

}s

typedef struct first_sta
First_Sta ;

struct first_sta {
StaPt *sta_pt ;
First_Sta *next ;
}s

Short description of structures and data members. File name

libGA.h

Unique grid point identifier number. For the southern
hemisphere this is negative.

Latitude of current beam point.

Longitude of current beam point.

Depth of mid-point of cell.

Lower depth bound.

Upper depth bound.

Radius of disk cell around grid point.

b-value in that cell.

Pointer to the next grid point. NULL if last.
Pointer to the previous grid point. NULL if first.

Beam point structure. Contains a pointer to the static libGA.h
grid point structure that it is associated with, plus point-

ers to the StaPt structures containing the Grid-point -

Station information.

Pointer to Grid_pt structure containing location infor-
mation.

Stations with potential for recording first arrival. Type
First_Sta is a linked list of pointers to stations.

The pointer will be specific to stations in the StaPt list.
Pointer to the linked list of all stations.

Pointer to next Beam_pt. NULL if last.

Pointer to previous Beam_pt. NULL if first.

Linked list of first arrival stations. libGA.h

Pointer to station-beam point info.
Pointer to next First_Sta structure.

Page 21

Structure name and definition.

typedef struct stapt StaPt ;

struct stapt

{

char sta[] ;

int tab_index ;
float delta ;
float azi ;

float baz ;
float min_mag ;
float mag_cor ;

float d_mag_cor_dr;
float d_mag_cor_dz ;

Phas_Inf *Ppt ;
StaPt *next ;
s

typedef struét phas_inf

Phas_Inf ;

struct phas_inf
{

char ph_id[] ;
Bool prim ;

float ttime ;

float ttime_min ;

float ttime_max ;
float d_ttime_dr ;
float d_ttime_dz ;
float delcell ;

Phas_Inf *next ;
}3

Short description of structures and data members. File name

Linked list of stations libGA.h

Station code.

Index into arrival table for use in GAassoc.
Distance from beam point.

Azimuth between beam cell center and station (angle
measured at station).

Back-azimuth (angle measured at beam cell center).
Minimum detectable magnitude at station.
Magnitude correction at center of cell.

Radial derivative of magnitude correction.

Vertical derivative of magnitude correction.

Pointer to phase information.

Pointer to next station. NULL if this is the last station
on the linked list.

Linked list of phase information structures. libGA.h

Phase id. Seismological naming convention.

True if phase is primary.False otherwise. Used in GAas-
soc

Travel time to center of cell.

Minimum travel time.

Maximum travel time.

Radial travel-time derivative at cell center.

Vertical travel-time derivative at cell center.

Cell width in slowness vector space computed from min
and max slowness and azimuthal aperture (width of cell
as seen from station).

Pointer to next phase. NULL if last.

Table 2: Major modules in GAcons

List of the major software modules of GAcons with a short description of their function and the
name of the file where they reside.

Subroutine Prototype. Short description of function. File name.

int main() main for GAcons GAcons.c

int GA_dist_depth_ranges Reads the distance/depth range information for each GA_dist_depth_ra
(Dist_Depth_Range phase type from a user-specified file. nge.c

**dist_depth_range,
char *range_file,
char **phase_list,
int num_phases)

int GA_first_arrival_stations Generates a list of stations susceptible of recording the =~ GAcons.c

(Beam_pt *bmpt, first arrival for a given beam point cell. Also estimates

Netwrk *net, the minimum magnitude detectable at the station for an

int nsta) event within the beam point cell.

int GA_beam_point_stations Generates the beam point - station information such as GAcons.c
(Beam_pt *bmpt, travel time bounds, slowness bounds, maximum detect-

Netwrk *net, able magnitude, etc.

int nsta,

Dist_Depth_Range
*dist_depth_range)

double GA_fkdist Computes the maximum possible distance in fk space ~ GAcons.c
(float slow, between a slowness vector for an event anywhere in the

float slow_min, cell and an event at the center of the cell as seen from a

float slow_max, given station.

float azi_del)

Page 23

] T R $ WS $ $ N 929200 a0

3.2.2 Main Association Program (GAassoc)

GAassoc uses the grid data generated by GAcons to associate arrivals processed by StaPro and
form event hypotheses. Each instance of GAassoc executes a loop over all grid cells included in a
file given as user-input. Each grid cell is examined as a potential location for a seismic event. Grid
files can be generated for multiple sectors, and GAassoc can be run separately (in parallel) for
each sector.

The major tasks performed by GAassoc for each grid cell are:

* Identify a DRIVER arrival
* Search for corroborating arrivals
* Apply preliminary event confirmation criteria

This results in a set of preliminary event hypotheses for each grid cell. After all grid cells in the
current sector have been processed, GAassoc performs the following additional tasks for each
event hypothesis:

* Split degenerate hypotheses

¢ Eliminate redundant event hypotheses

* Eliminate unlikely event hypothesis based on probability of detection
* Locate events and apply outlier analysis

* Apply event confirmation criteria

Each of these tasks are described in the following section. User-parameters referred to in this sec-
tion are described in detail in Appendix B.

3.2.2.1 Algorithms

The algorithms used by GAassoc to associate phases and form events are divided into eight sec-
tions corresponding to the tasks listed in the previous section.

Tasks for each grid cell
Identify a DRIVER arrival

The first task for each grid cell is to identify DRIVER arrivals. A DRIVER is an arrival at one of a
limited set of stations in the network that could record the earliest arrival for an event in the given
grid cell. This set of stations was determined by GAcons and is stored in the grid file. The maxi-
mum number of stations that will be considered for any grid cell can be specified by the user-
parameter, num_first_sta. GAassoc processes arrivals in time-steps. To ensure that all corrobo-
rating arrivals of interest are available in the time-step, arrivals are loaded from the user-specified
interval, start_time - lookback to end_time, but only arrivals with arrival times before end_-
time - lookback are considered as potential DRIVERS. The DRIVER has to have been identified
as P, Pn or Pg by station processing (StaPro) and it must satisfy constraints on its slowness vec-

Page 24

tor. Once a DRIVER is found, a hypothetical event origin time, magnitude and location are esti-
mated.

The constraint on the slowness vector is illustrated in Figure 9. The length of the difference
between the observed slowness vector and the predicted slowness vector must be less than a
threshold. This threshold is the sum of the standard deviation of the slowness for the arrival
(delslo), multiplied by a user-specified factor () and the maximum difference between the slow-
ness vector to the center of the cell and to any other point in the cell (A cell).

A A cell + ¢ delslo
K Acell

difference vector

theoretical

observed

ol

kX

Figure 9. This illustrates the relationship between the theoretical and observed slow-
ness vectors in wavenumber (kx-ky) space. The match between these two vectors
depends on the length of the difference vector.

The standard deviation of the slowness for the arrival (delslo) is read from the database. User-
parameter, sigma_slowness, specifies the factor 6. The maximum slowness vector difference (A
cell) for the specific station, phase and cell is computed by GAcons and is stored in the grid file.

Search for corroborating arrivals

The next step in the association process is to search for arrivals that are consistent with the
DRIVER (i.e., corroborating arrivals). This is done by examining arrivals at all stations at times
later than the DRIVER, where the arrivals are restricted to phases in user-specified list (phases).
Alternative phases to those determined by StaPro for these arrivals will be considered from a
user-specified list (forward_transformation_list). If the confidence of the initial phase identifica-
tion as read from the belief value in the assoc database table, is greater than a user-specified
threshold (belief_threshold), then GAassoc will not override the phase identification determined
by StaPro. An optional restriction can be imposed that a secondary phase may be associated only
if there is an associated primary phase from the same station (primary_required_for_second-
ary). There is also a restriction that arrivals grouped by StaPro may not be associated if the group
includes a regional S (specified by regional_S_phases) and o (S- P time) is less than the dis-
tance (in degrees) from the station to the center of grid cell (a is currently set to 0.1).

A simple screening process based on travel time and slowness vector (if available) is performed

first. The theoretical arrival time is estimated from the observed arrival time, the travel time for
the phase stored in the grid file, and an estimate of the event origin time derived from the DRIVER

Page 25

assuming the location is at the center of the cell. The travel-time residual must be less than the
sum of the time uncertainty (deltim), multiplied by a user-specified factor (sigma_time), and the
maximum travel time across the grid cell. The maximum travel time across the cell is computed
by GAcons and stored in the grid file. The slowness vector test is the same as that applied to the
DRIVER described above.

A more rigorous chi-square statistical test is applied if an arrival successfully passes this initial
screening. The chi-square test examines the compatibility between the corroborating arrival and
the DRIVER arrival with an hypothesized event within the current grid cell. It uses all available
features of the arrivals including travel time, slowness vector and amplitude. A location is per-
formed using the time and slowness vector of both arrivals, when available (Figure 10). Assuming
that the data and model parameters are normally-distributed, the location problem can be formu-
lated as a least-squares problem which we solve by the QR decomposition method. The matrix
elements for the least-squares location problem are stored in the grid file for each grid cell. They
consist of the spatial derivatives of time, slowness vector components and magnitude. The model
vector includes the origin time, magnitude (when amplitude data is available), and location (x, y
and z) of the hypothesized event. The data vector is made up of the two travel time differences,
the two magnitude residuals (when available), four components of the slowness vector (when
available) and the x, y and z components of the location. The location coordinates in the data vec-
tor help stabilize the inversion. The model and data vector components are scaled by their stan-
dard deviations, so that the sum of squares of residuals can be interpreted as a chi-square sum
which we compare to a user-specified threshold (chi_limit). The values for the standard deviations
are important since they influence the chi-square sum. The values currently used for the standard
deviations are: the radius of the grid cell for the x and y components of location, the half-depth of
the cell for the z component, the estimated standard deviation (deltim) for the two time measure-
ments, 0.3 magnitude units for the amplitude measurement and the magnitude, and the estimated
standard deviation for the slowness vector components (delslo).

Location derived
) from data for two arrivals

Station A
Grid cell (DRIVER station)

Station B
(corroborating station)

Figure 10. Schematic representation of the grid cell, its center, the stations corre-
sponding to the DRIVER and corroborating arrival, and the location derived from
these two arrivals.

Page 26

As an efficiency heuristic, it is possible to freeze arrivals once they are associated with a prelimi-
nary event (freeze_arrivals_at_beam_points). Frozen arrivals will not be considered for asso-
ciation with any other preliminary event at the same grid point, but this will not affect their
association with preliminary events at any other grid point.

Apply preliminary event confirmation criteria

When all possible corroborating arrivals have been examined for compatibility with the DRIVER,
a weighted-count confirmation test is applied to the preliminary event. The following components
are counted for the set of associated arrivals and multiplied by separate user-specified weights
(primary_time_weight, secondary_time_weight, array_azimuth_weight, 3comp_azi-
muth_weight, array_slow_weight, 3comp_slow_weight):

* time for a primary phase

» time for a secondary phase

* azimuth at an array

* azimuth at a 3-component station
* slowness at an array

* slowness at a 3-component station

The event is removed from the list of preliminary events if the sum is less than a user-specified
threshold (weight _threshold).

Tasks for each event hypothesis
Split degenerate hypotheses

The initial event construction can produce preliminary events that include incompatible arrivals
such as two or more arrivals at the same station identified as the same phase, or the same arrival
identified as two or more different phases. When this occurs, the degeneracy is split into two or
more separate, self-consistent events. The event confirmation test is reapplied after the splitting
since some of the resultant events may no longer pass the test.

Eliminate redundant event hypotheses

The same set of associations can be consistent with two adjacent grid points. It is also possible for
a subset of associations to be consistent at an adjacent grid point. Consequently, a test can be
applied after splitting to remove these redundancies from the list of preliminary events (redun-
dancy_required). For an event to be deemed redundant, its arrivals must form a subset of
another events’s arrivals, and the arrivals in common must have been identified as the same phase.
In addition, unless the freeze_arrivals_at_beam_points option is selected, the DRIVER must
also be the same for both preliminary events. In the case of identical sets of associations, the one
which best fits its grid cell is retained.

A double linkage is established when arrivals are associated with events. Each event includes
pointers to its set of associated arrivals and, similarly, each arrival includes pointers to the events

Page 27

with which it is associated. The algorithm used to check redundancy takes advantage this linkage,
illustrated in Figure 11. To test whether an event (referred to as Event A) is redundant with
another, its associated arrivals are examined and the arrival associated with the smallest number
of events is identified. If that number is one, the event cannot be a subset of another. Otherwise,
the other events connected to that arrival are examined and their arrival sets compared to that of
Event A. If the arrival set of Event A is found to be a subset of one of these events then Event A is
redundant. The benefit of using the double-linked structure is that it supports a reduced search
space. The link from arrival to events allows the search to be restricted to events linked through at
least one arrival.

Figure 11. Linkage between preliminary events and arrivals. Arrivals are numbered
from 1 to 7 and events from A to E. The same arrivals are repeated at the top and bot-
tom of the figure. Events include pointers to their associated arrivals, and arrivals
include pointers to events with which they are associated.

As an efficiency step, a partial redundancy analysis is performed during the association of corrob-
orating arrivals if the number of preliminary events formed reaches a user-set limit (count_/limif).
This redundancy analysis is only applied to preliminary events built since the prior redundancy
check.

Eliminate unlikely event hypothesis based on probability of detection

GAassoc has the option of applying a network probability test to preliminary events both before
and after the event location is computed (probdet_before_location, probdet_after_location).
The test is intended to screen unlikely small events that were not detected at a sufficient number
of probable stations, and it is only applied to events where the number of associated primary
phases is less than a user-specified limit (max_obs_net_prob). The advantage of applying it
before location is that it can significantly reduce the number of event hypotheses that must be
located.

The network probability test is based on determining for each preliminary event whether the set of
stations at which primary phases have been detected is compatible with the location and magni-
tude of the preliminary event. The probability of detection at each station is computed from the
estimated location and magnitude of the event, the location of the station, nominal values of the
station noise, signal-to-noise detection threshold, and reliability (nois, noissd, snthrsh, and rely
from the siteaux database relation), and an amplitude attenuation table (atten_file). When this

Page 28

test is applied before location, the center of the grid cell is used as the estimated location and the
estimated magnitude is the median of the individual station magnitudes. After location the com-
puted location and magnitude are used.

The actual test takes the difference between the log of the product of the likelihoods for all station
in the network (4) and its expected value (5) and normalizes this difference by the square root of
the variance of the expected value (6).

{ log Py if a primary phase is detected at the kzh station @

kstations © 108 (I- Pi) if a primary phase is not detected at the kth station

where k runs over active stations and P}, is the probability of detection
at the kth station times the estimated reliability of the station

> [Prlog Pr+(1-Py)log(l-Py)] 5

k,stations

[Y, Py (I-Py) (log P, -log (]_Pk))z]1/2 ©

k,stations

The hypothesis is eliminated if the expected value minus the actual value, divided by the square
root of the variance, exceeds a user-specified threshold (residual_over_sigma_max).

Locate events and apply outlier analysis

Events remaining after this preliminary screening can be located and an analysis made of the
residuals. Qutliers are removed if necessary, redundancy checks performed, and the location
refined. The locator uses the libloc library locator subroutine. Whether the locator is called or not
is controlled by the parameter location_required. Whether the location is computed at fixed or
free depth is controlled by the parameter /oc_fix_depth. The fixed depth option uses the depth of
the center of the grid cell. The location residuals are analyzed in terms of a chi-square test. Resid-
uals for all data components are used simultaneously to compute a chi-square value. An outlier is
defined to be an arrival whose chi-square value is larger than a user-set threshold (chi_outlier).
The following procedure is then applied to each preliminary event to eliminate outliers:

Outlier analysis:
If there are no outliers, proceed with event confirmation tests.
If there are outliers.
Eliminate the worst outlier not including the DRIVER.
If the event is now redundant, remove it from the list.
Re-locate with the reduced set of arrivals.
Back to outlier analysis.

The redundancy test that is applied is the same as the one applied during association of corrobo-
rating phases except that the DRIVER is no longer required to be the same for both events.

Page 29

Apply event confirmation criteria

A number of confirmation tests are applied to the event before it is written out to the database.
These include the weighted-count test applied after association of corroborating phases, a supple-
mental restriction that the event have a user-specified minimum number of associated arrivals
(req_num_of_defining_detections), and a restriction that the major axis of the error ellipse be
less than a user-specified threshold (max_smajax). The same network probability test that was
applied before location may also be applied at this point (probdet_after_location) using the
computed event location and magnitude. Only events that pass all of the event confirmation tests
are written to the database.

3.2.1.2 Data Flow

The data flow diagram describing the exchange of data between different modules within GAas-
soc is shown in Figure 12. Each submodule of GAassoc corresponds to a specific task. The sub-
routines used to accomplish each task are indicated in bold face and square brackets next to each
module.

3.2.1.3 Major Software Components

This section presents tables with the standard ANSI C implementation of the major data structures
and subroutines used in GAassoc. The data structures are described in Table 3 and the relation-
ship between them is shown in Figure 13. The major software components of GAassoc are
described in Table 4, and additional modules are described in Table 5.

The Arrival_Inf and Sta_Ar arrays of structures are initiated at the beginning of a GAassoc ses-
sion from the arrival and assoc tables in the database. They are static during each execution of
GAassoc. The Drivers structure contains preliminary events. These are built during the associa-
tion loop. The Cor_Sta data structures contains information on the corroborating phases.

GAassoc uses the Generic Database Interface (GDI) for all transactions with the RDBMS [Ander-
son et al., 1994]. The database tables are from the CSS 3.0 schema and its IMS Extensions
[Anderson et al., 1990; Swanger et al., 1993].

3.2.3 Shared Libraries (libGA)

Modules common to GAcons and GAassoc have been grouped under the libGA library. This
library includes the subroutines associated with building the grid, dividing it between sectors, and
reading and writing the grid file. This section provides a detailed description of the file structure
currently used.

3.2.3.1 Data Description

The grid file is a flat file containing the information pertaining to all beam points in a sector for the
complete network of stations. The information is written sequentially by Beam Point Record. As

Page 30

b
Precomputed
Beam point-station
information

Read
from file

[GA_file()]

arrival db table

2.2

Beam point structures

Extract
arrival

list
2.1

[GAarrival()]

Restrict
phase list

[GA_restrict_phases()]

2.3

[GA_split_analysis()] Beam point structures
[GA_check_hitcount()] Station_arrival structure

[GA_redundancy_check()]
[GA_prelocation_probdet()]

’\/

Driver structures

Identify
alr)ld [GA _assoc_loop()]
corroborate .
drivers [GA_partial_redundancy()]

[GA _split_analysis()]

24 [GA_check_hitcount()]

Driver structures

[GA_locate()]
[GA _network_prob()]

Locate

and confirm
preliminary
events

2.6

Ev_Info structures

Figure 12. This is the Level 1 DFD for GAassoc.

Page 31

Table 3: Major data structures in GAassoc

List of the major data structures in GAassoc with a short description and the name of the file

where they reside.

Structure name and definition.

typedef struct driver Driver;

{

struct Beam_pt *bp;
char ph_id[1;

StaPt *stpt;
Phas_Inf *phspt;

Sta_Ar *sta;
Arrival_Inf *ar;

Cor_Sta *csta;
double or_time;
double or_tmin;
double or_tmax;
double dr_mag;
double gfact;

double weight ;

int num_obs;
Driver *next;

b

typedef struct cor_sta Cor_Sta;
struct cor_sta

{

Sta_Ar *sta;

Arrival_Inf *ar;

double qual;

double mag;

char ph_id [];

Cor_Sta *next;

|5

Short description of elements. File name

Driver or generator. This is a structure formed tocon- GAassoc.h
tain preliminary event information. It contains pointers
to static station and arrival information and to the beam

point where it has been formed.

Pointer to Beam-Point structure.

Phase ID for driver arrival.

Pointer to station information for beam point.

Pointer to phase information for this driver-phase-beam
point.

Pointer to station arrival structure for first arrival station
Pointer to Arrival_Inf structure for first arrival for this
driver

Pointer to corroborating stations and arrivals list
Origin time for the driver

Min. origin time for the driver

Max. origin time for the driver

Magnitude computed from this driver

Quality factor. This is the combined probability for all
corroborating phases to be associated with this driver
Current ‘weight’ of driver obtained by adding all
weights for associated arrivals

Total number of arrivals for this driver, including driver
Pointer to next driver.

Corroborating station. Used to associate driver to cor- GAassoc.h

roborating arrivals.

Pointer to station detections info.
Pointer to arrival

Quality factor of the chi2 association
Magnitude of corroborating association
Phase id for this arrival.

Pointer to next Cor_Sta.

NULL if last.

Page 32

Structure name and definition.

typedef struct arrival_inf
Arrival_Inf;

struct arrival_inf
{

long arid;
double time;
char iphase[];
double deltim;
double azimuth;
double delaz;
double slow;
double delslo;
double amp;
double delamp;
double per;
double logat;
double weight;

double belief;
Stassid_pt *staspt;

int assoc;
int drl_count;

Dr_list *drl_anchor;
Dr_list *drl_current;

5

typedef struct ev_info Ev_Info;

struct ev_info

{

Origin origin;
Origerr origerr;
Arrival *arrival;
Assoc *assoc;
int num_obs;
int good_event;
int loc_err_code;
Ev_Info *next;
|5

Short description of structures and data members.

Arrival information extracted from arrival table

arid for this arrival.

time of arrival.

reported phase.

uncertainty on measurement of time.

measured azimuth.

uncertainty in azimuth.

measured slowness.

uncertainty in slowness.

measured amplitude.

uncertainty on amplitude measurement.

measured period.

measured log of amplitude over period.

weight of observation based on user-defined coeffi-
cients. Each of the time, azimuth and slowness have a
coefficient.

Belief field from assoc table if available.

Pointer to stassid structure if available.

This will be NULL if no valid stassid available.

Flag. assoc =0 if the arrival is not associated.
Driver count of drivers(events) associated with this
arrival (detection).

Pointer to the first driver in the linked list of drivers this
arrival belongs to.

Pointer to the last (current) driver in the linked list of
drivers this arrival belongs to.

Preliminary event structure built by the locator module.

Origin record

Origerr record.

Pointer to arrival record.

Pointer to assoc record

Number of observations associated to the event.
Flag

Flag. Locator error code.

Pointer to the next Ev_Info structure.

File name

GAassoc.h

GAassoc.h

Page 33

arrivals arrays —
Arrival_Inf _—
structures

(one array |
per station) —‘

| 1]

KyREEEEN

g

NEKginnEnNEE

i s : -

Sta_Ar |

structures, ‘ /‘ /‘ /“ next
ofefe] [ofefe] [e]e]e]

linked list of corroborating arrivals (Cor_Sta structures)

next
el Te

Driver linked list (Driver structure)
Beam point (Beam_pt structure)

[:I Grid point (Grid_pt structure)

Figure 13. This diagram illustrates the data structures for GAassoc.

Page 34

Table 4: Major modules in GAassoc

List of the major software modules of GAassoc with a short description of their function and
the name of the file where they reside.

Subroutine Prototype.
int main()

int GA_assoc_loop

(char *filename,

Driver **anch,
Assoc_loop_params *params
)

void GA_partial_redundancy
(Driver **driver,

Driver **end,

Driver **prev,

Bool freeze

)

void GA_redundancy_check
(Driver **driver,

Driver **dr_preyv,

Bool freeze

) -

void GA_split_analysis
(Driver *driver

)

double GA_chi2_test
(Driver *driver,

StaPt *stpt,

Phas_Inf *phspt,
Sta_Ar *sta,
Arrival_Inf *ar,

int *free_deg,

double *res_vec

)

void GA_check_hitcount
(Driver **dr_anch,
double threshold

)

int GA_locate

(Ev_Info **ev_info,
Driver **dr_anch,
Locator_params
*locator_params,
Ev_Confirm *ev_confirm,
double chi_outlier,

Site *sites,

int num_sites

)

Short description of function.
main for GAassoc

This subroutine performs the main task of the associa-
tion program. It builds preliminary events and returns
them in a linked list with anchor element anch.

Performs a redundancy check on part of the linked list
of preliminary events (Driver structures). This is used
during the association loop to reduce the number of pre-
liminary events formed if this number reaches a user-set
limit.

Performs a redundancy check on the complete linked
list of preliminary events. This is called after the associ-
ation loop.

Performs the split analysis on the whole linked list of
preliminary events.

Performs the chi-square test analysis for a driver arrival
and one of its corroborating arrivals. The corroborating
arrival has been screened previously for arrival time
and slowness vector. A QR method is used to solve the
least-squares problem.

Checks the weights of all preliminary events in the
linked list. Eliminate preliminary events which weigh
less than a threshold value.

Locator module.This module locates the preliminary
events and refines the events by doing an outlier analy-
sis on them. The linked list of driver structure prelimi-
nary events is input into the module and a linked list of
located and confirmed events (Ev_Info structures) is
formed.

File name
GA_assoc.c

GA_assoc_loop.c

GA _assoc_loop.c

GA_assoc_loop.c

GA_assoc_loop.c

GA_chi2_test.c

GA_reduce.c

GA_locate.c

Page 35

Table 5: Additional modules in GAassoc

These additional subroutines are called by the major components of GAassoc.

Subroutine prototypes.

int GAarrivals

(dbObj *arr_obj,

Sta_Ar **ar_table,

int *nsta,

Ev_Confirm *ev_confirm,
Site *sites,

int nsites

)

int GA_destroy_driver
(Driver **dr

)

int GA_restrict_phases
(Beam_pt *bmpt,

char **phases, -

int nphases,

char **primary_phases,
int nprim

)

Bool GA_redundant_subset
(Driver *driver,

Bool freeze

)

int GA_same_arrival_count
(Driver *driver

)

int GA_same_phase_id_count
(Driver *driver

)

void GA_split_phase_id
(Driver *driver,

Cor_Sta *csta,

Cor_Sta *cur

)

void GA_split_arrival
Driver *driver,

Cor_Sta *csta,

Cor_Sta *cur

)

Driver * GA_split_driver
(Driver *driver

)

Short description.

Interface subroutine. Builds an array of Sta_Ar ele-
ments and fills in the information from the dbobj
arr_ob;j.

Releases memory previously allocated to element type
driver and all associated corroborating arrivals.

Restricts the list of phases to be incorporated into the
linked list for each beam point-station pair based on a
user provided list.

Determines whether preliminary event driver is redun-
dant with another event within the linked list of prelim-
inary events.

Counts the occurrences of the same arrival within the
preliminary event.

Counts the occurrences of the same phase id within the
preliminary event.

Splits the preliminary event driver into two events. Cor-
roborating elements pointed at by csta and cur shared
the same phase id.

Splits the preliminary event driver into two events. Cor-
roborating elements pointed at by csta and cur shared
the same arrival.

Calls either GA_split_arrival or GA_split_phase_id
after GA_same_arrival_count or GA_same_phase_id
count has determined redundancy of arrival or phase id.

File name.

GA_assoc.c

GA_assoc.c

GA_assoc.c

GA_reduce.c

GA_reduce.c

GA_reduce.c

GA_reduce.c

GA _reduce.c

GA_reduce.c

Page 36

shown below, the structure of the file allows for a flexible number of beam points, stations and
phases.

Beam Point 1 Record Flag Beam Point 2 Record Flag

Last Beam Point Record Flag

At the end of each Beam Point Record, a four-byte integer flag indicates whether or not there are
more beam points. A value of one indicates that there are more, and a value of zero indicates the
end of the file.

The first two elements of the Beam Point Record are the index number of the grid point and the
size of the record. Following this header is a Grid Point Record containing static information such
as latitude, longitude, radius of the cell, etc. The length of this record is equal to the size of the
grid_pt structure (Grid_pt) as listed in Table 1. The next records contain the “first-arrival station”
information. For each station that could detect the earliest arrival, a First Station Record of length
equal to the size of the StaPt type is written (see Table 1). First Station Records are separated by
a flag indicating whether or not another record follows the current one. This is shown in the dia-
gram below.

Grid Point Record First Station 1 Flag First Station 2

index
S1Ze

Following the last First Station Record are structures containing Station Records for all stations in
the network and Phase Records for all phases requested by the user. The Station Record comes
first and it is followed by the first Phase Record (the length of this record is equal to the size of the
Phas_Inf C type). All Phase Records are written in sequence separated by flags. The last Phase
Record for a station is followed by a flag indicating there are no more Phase Records to follow.
Two zero flags (one after the other) indicate the end of the last station for this beam point. This is
illustrated below:

Last First Station | Flag | Station A Phase 1 Flag | Phase2
Last Phase| Flag | Flag Station B Phase 1 Flag
Flag Last phase of last station Flag | Flag

Page 37

The Grid Point Record has the following format:

. I upper._ ' :
index | lat lon | depth | ‘OWer_ dggth_ radius b_value IGNORE

depth o
: bound oun
t
n float | float float foat float float float pt pt

The last two elements can be ignored when reading the file. They contain the pointers to the previ-
ous and next Grid Point Records which are unusable when reading from the file. This record
t matches the Grid_pt C type defined in Table 1.

Each Station Record contains the attributes characterizing the station-beam point pair. The format
is shown below:

1
A~ . : d_mag_ |d_ma
station code | delta | azi | azi_min | azi_max | min_mag [mag_cor cor_d%_ cor_dg; IGNORE

char 6 float | float { float float float float float float | pt | pt

A number of Phase Records are attached to each Station Record. These characterize the propaga-
tion between the station and beam point. All phases that can exist at the station for an event within

the grid cell that have been specified by the user are included as Phase Records. The format of the
Phase Record is shown below:

phase ID| prim | ttime| ttime_min | ttime_min | d_ttime_dr d_ttime_dz| delcell IGNORE
char 9 | Bool | flpat| float float float float float pt

3.2.3.2 Major Software Components

The major software components of libGA are described in Table 6, and additional modules are
described in Table 7.

Page 38

Table 6: Major modules in libGA

LibGA contains subroutines that are common to GAcons and GAassoc. The following
subroutines are the major components of the library. A short description is attached to
each subroutine and the file they reside in is listed.

Subroutine Short description File name
int GAgrid_build Builds a quasi-uniform surface grid given a grid spacingin GAgrid.c
(double grid_spacing, degrees and returns a handle to the first element in a linked

Grid_pt **anchor list of Grid_pt structures.

)

int GAgrid_subsmp Subsamples the whole earth grid given a region specified GAgrid.c
(Beam_spec reg, in Beam_spec reg, the pointer to the anchor element of the

Grid_pt *gpt, global grid (gpt), and returns the pointer to the subgrid

Grid_pt **gsub gsub).

)

int GAdepth_build Adds the depth elements to the grid given the seismicity GAgrid.c

(Depth_Grid *depth_grid, information and the parameters of the depth cells.
int Num_depth_bnd,

Grid_pt *bmp,

char *event_file,

double Min_nu-

m_events_per_10sq_deg

)

int GA_file Writes or reads file containing grid information. GAgrid.c
(Beam_pt **anch,

char *filename,

int rw

)

Page 39

Table 7: Additional medules in libGA

The following list of subroutines are called by the major modules in libGA.

Subroutine

int GA_station_info
(dbObj *sta_obj,
Netwrk *¥*net,

int *nsta

)

void * GAgrid_destroy
(Grid_pt **gpoint
)

int GA_destroy_sta_info
(StaPt **station
)

int GA_destroy_first_-
sta_info

(First_Sta **first_station
)

int GA_cmpsta
(const void *sta_inf1,
const void *sta_inf2

Short description

Transfers the station information from a dbobj into the
Netwrk structure.

Releases memory allocated to the grid point linked list
whose anchor element is passed as argument.

Adds the depth elements to the grid given the seismicity
information and the parameters of the depth cells.

Releases memory allocated to all first arrival stations in
the linked list with anchor element first_station.

Compares two Sta_Inf structures. This is for use in the
general sorting function gsort. The sorting is done
according to the grid cell to station distance.

File

GA_station_info.c

GAgrid.c

GA_station_info.c

GA_station_info.c

GA_station_info.c

Page 40

3.3 Expert System for Association and Location (EServer/ESAL)

The event hypotheses produced by GAassoc are processed by ESAL to resolve conflicts and to
refine the hypotheses. GAassoc produces alternative event hypotheses which contain many con-
flicting associations of the same arrival. The hypotheses do not include any associations of late-
arriving secondary phases and occasionally are missing associations of consistent primary phases.
ESAL reads the event hypotheses produced by GAassoc, resolves the conflicts, and completes
the set of associations. Specifically, ESAL performs the following functions to complete the
GAassoc hypotheses:

* Resolves conflicts when a single arrival is associated with multiple event hypotheses.
* Associates late-arriving secondary phases.
* Associates primary phases that may have been missed by GAassoc.

* Resolves edge-effect conflicts which can arise when GAassoc is parallelized to run separate
processes on different sectors of the Earth.

ESAL is a full-functioned knowledge-based automatic association program capable of processing
arrivals from a single station (Station Processing) and from a network of stations (Network Pro-
cessing). It is a mature program which has been used for a number of years in different systems
with varying processing requirements. It has been used in IMS to process continuous data from a
small regional network [Bache et al., 1993], in ADSN to process continuous teleseismic data, and
in the GSETT-2 experiment to process mixed regional and teleseismic data from a global net-
work. It is programmed in the ART expert system shell (a product from Inference Corporation)
and Common Lisp, with integrated C and Fortran libraries which perform earth-model calcula-
tions. ESAL has been described in detail elsewhere [Bratt et al., 1991, 1994] and we will focus
here on those features which have been added to allow processing of GA preliminary hypothe-

SCSI.

The basic model used by ESAL for Network Processing is to generate a series of trial origin
hypotheses using any of a number of different techniques (Trial Origin Methods) and to then iter-
atively develop the hypotheses by adding new associations, relocating, and removing inconsistent
associations (the Association Loop). In this system, all new trial origins are generated from
GAassoc hypotheses. Only one other trial origin method is used: Previous, which is used to com-
plete events partially formed during the preceding time-step. The primary modification of ESAL
for this system was the addition of a new Trial Origin Method which reads the GAassoc prelimi-
nary hypotheses and resolves the conflicts before passing them to the Association Loop.

1.ESAL is a highly parameterized program which allows considerable customization of its application to
different networks and processing requirements. There are over 300 user adjustable parameters which are
described elsewhere [Bratt et al. 1990, 1994]. In the following discussion we will reference only selected
parameters of specific interest to the processing of GAassoc hypotheses. Descriptions of new parameters are
given in Appendix C.

Page 41

ESAL reads most of its input data from, and writes its output to, flat files in the external format of
the CSS 3.0 database schema [Anderson et al., 1990; Swanger et al., 1993]. EServer provides the
interface which moves data between these files and the RDBMS. EServer was modified for this
application to write files corresponding to the GAassoc solutions for input to ESAL!.

3.3.1 Conflict Resolution

The main task for ESAL in this system is the resolution of conflicts between different GAassoc
hypotheses that associate the same arrival. ESAL has a conflict resolution mechanism that is used
to resolve conflicts that arise in the course of normal ESAL processing, but this proved inade-
quate for two reasons: 1) It assumes that conflicts are resolved as they arise and that consequently
there will never be more than a couple of origins in conflict at one time; this allows a conservative
approach which becomes computationally very expensive as the number of origins in the conflict
set increases, and 2) The resolution is not performed until the origin is completely formed (i.e.,
has passed through the entire Association Loop). GAassoc generally produces one to two orders
of magnitude more hypotheses than the number of final events. The cost of passing all of the
hypotheses through the Association Loop plus resolving the large conflict sets was found to be
prohibitive.

Consequently, we implemented a new trial origin method, called GA, wherein the conflicts are
resolved before any hypotheses are passed to the Association Loop. The preliminary hypotheses
generated by GAassoc are read from a set of files in the CSS 3.0 external format of the origin,
origerr, and assoc relations produced by EServer?. They are read into data structures parallel
to, but distinct from, those used in the rest of ESAL processing. This is because ESAL is a rule-
based system which makes extensive use of pattern matching on the data objects representing
event hypotheses. It is very inefficient to perform all of the initial pattern matching on the large
number of preliminary hypotheses that will not survive conflict resolution.

All conflicts with multiply-associated arrivals are resolved to produce a set of distinct hypotheses
which can be used as trial origins. The conflicts are resolved on an arrival basis. Each arrival
which is associated to more than one hypothesis is examined in the context of the hypotheses and
is disassociated from all but the “best”. Four different tests are currently available to determine
which hypothesis is best3, and the implementation was structured to make it convenient to add
and evaluate alternative tests. Three of the tests evaluate the hypotheses exactly as they are input.
These are: 1) smallest error-ellipse area, 2) largest number of defining phases4; ties are broken by
smallest error-ellipse area, and 3) a composite test which is the same one ESAL uses elsewhere to
resolve conflicts; this is based on an ordered list of criteria including: defining vs. non-defining,
firmly-associated vs. weakly-associated, number of defining components, and error-ellipse area.

1.EServer parameters added to allow writing of files containing the GAassoc solutions include: write_ga_-
files, ga_origin, ga_origerr, ga_assoc, and ga_arrival.

2.[ga-origin-filename, ga-origerr-filename, ga-assoc-filename]

3.[ga-conflict-resolution-heuristic]

4.A “defining” phase is one that has been used to the calculate the location of the hypothesis. A defining
component is a phase attribute, time, azimuth or slowness, which has been used to the calculate the location
of the hypothesis.

Page 42

The fourth test is also based on the largest number of defining phases, but starts at the best hypoth-
esis and progressively reduces the number of defining phases of each hypothesis that loses an
association. This type of test, where the measure of a hypothesis is revised when it loses an asso-
ciation, is clearly desirable but not practical for many tests. Tests that depend on the error ellipse
or residuals or any feature that requires re-calculation of the location would be very expensive
given the number of conflicts that GAassoc typically produces.

When conflict resolution is complete, all remaining distinct hypotheses are checked to determine
if they still satisfy a minimality condition; hypotheses that do not are abandoned. The check used
is ESAL’s weighted-count event confirmation test. The number of defining time, azimuth and
slowness components from arrays and 3-component stations are counted separately, multiplied by
parameterized weights, and the sum compared to a threshold!. This is the same test that is used
during GAassoc and later by ESAL during event confirmation.

Distinct hypotheses which pass the weighted-count test are used one at a time as trial origins, and
are ordered by either origin time, number of defining phases, or body-wave magnitudez.

In addition to the conflicts discussed above, which exist between preliminary hypotheses pro-
duced by a single GAassoc run, there can be conflicts due to edge effects produced by dividing
the Earth into sectors and running GAassoc separately on each sector. These conflicts can be
resolved either by processing them through ESAL all at once, or by running ESAL on the results
of each GAassoc run and then merging the results in a subsequent run using ESAL’s normal con-
flict resolution.

3.3.2 Event Refinement

As mentioned above, a trial origin is passed to the Association Loop where it is developed and
refined in an iterative sequence of adding new associations, relocating, and removing inconsistent
associations. This is where ESAL can add late-arriving secondaries and any primaries that may be
missing. Travel times, azimuths, and slownesses are predicted for arrivals within a window rela-
tive to the origin location and those with sufficiently small residuals are associated.

If this process were limited to non-defining secondary phases, we would expect it to be relatively
fast since it would not require relocating the origin. However, it is possible that GAassoc could
occasionally miss consistent primaries, so ESAL must be able add them and relocate the origin.

The Association Loop is organized in a parameterized series of discrete stages, or goals, which
allow control over issues like which stations and which phaseids are considered first. Since the
hypotheses provided by GAassoc are pretty well formed, we provide the ability to skip some of
the earlier goals3 .

1.[primary-time-weight, secondary-time-weight, array-azimuth-weight, array-slowness-weight, sin-
gle-station-azimuth-weight, single-station-azimuth-weight, weighted-count-confirmation-threshold]
2.[ga-ordering-parameter]

3.[initial-ga-goal)

Page 43

When the location has stabilized (all consistent defining phases have been associated), a number
of different event confirmation tests can be applied to the working origin. The working origin is
abandoned if it fails any of the tests. The tests we apply are: 1) an upper limit on the size of the
error ellipsel, 2) the same weighted-count test that was applied at the end of the trial origin forma-
tion, and 3) a network probability of detection test. The network probability of detection test is a

probable stations.

1.[semi-major-axis-threshold)
2.[probdet-ce-threshold, max-stations-for-probdet-ce-test, probdet-reliability-factor

new test in ESAL, and it is the same test that is applied during GAassoc. It is intended to elimi-
nate origins with a small number of associations that were not detected at a significant number of

Page 44

References

Anderson, J., W. Farrell, K. Garcia, J. Given and H. Swanger, CSS Version 3 Database: Schema
Reference Manual, Tech. Rep. SAIC-90/1235, Science Applications International Corporation,
59 pp., 1990.

Bache, T., S. Bratt, J. Given, T. Schroeder, H. Swanger and J. Wang, The Intelligent Monitoring
System Version 2, Tech. Rep. SAIC-91/1137, Science Applications International Corporation,
93 pp., 1991.

Bache, T., S. Bratt, H. Swanger, G. Beall and F. Dashiell, Knowledge-based interpretation of seis-
mic data in the Intelligent Monitoring System, Bull. Seismol. Soc. Am., 83, 1507-1526, 1993.

Bratt, S., G. Beall, H. Swanger, F. Dashiell and T. Bache, A knowledge-based system for auto-
matic interpretation of seismic data to associate signals and locate events, Tech. Rep. SAIC-91/
1281, Science Applications International Corporation, 73 pp., 1991.

Bratt, S., G. Beall, H. Swanger, F. Dashiell and T. Bache, A knowledge-based system for auto-
matic interpretation of seismic data to associate signals and locate events, Tech. Rep. [in
progress, revised edition of SAIC-91/1281], Science Applications International Corporation,
1994.

Given, J., W. Fox, J. Wang and T. Bache, The Intelligent Monitoring System: Software Integration
Platform, Tech. Rep. SAIC-93/1069, Science Applications International Corporation, 32 pp.,
1993.

Kerr, A. (ed.), Overview GSETT-3, Report prepared by the GSE Working Group on Planning, 9
pp., October, 1993.

Leonard, S., Automatic global event association and location estimation using a knowledge based
approach to generalized beamforming, Proceedings of the 15th Annual PL/ARPA Seismic
Research Symposium, PL-TR-93-2160, 248-255, 1993.

Ringdal, F. and T. Kva®rna, A multi-channel processing approach to real time network detection,
phase association, and threshold monitoring, Bull. Seismol. Soc. Am., 79, 780-798, 1989.

Sereno, T. and G. Patnaik, Initial wave-type identification with neural networks and its contribu-
tion to automated processing in IMS Version 3.0, Tech. Rep. SAIC-93/1219, Science Applica-
tions International Corporation, 37 pp., 1993.

Swanger, H., J. Anderson, T. Sereno, J. Given and D. Williams, Extensions to the Center Version
3 Database (Rev. 1), Tech. Rep. SAIC-93/1123, Science Applications International Corpora-
tion, 106 pp., 1993.

Taylor, D. and S. Leonard, Generalized beamforming for automatic association, Proceedings of
the 14th Annual PL/ARPA Seismic Research Symposium, PL-TR-92-2210, 422-428, 1992.

Page 45

Appendix A: StaPro Parameter Descriptions

This appendix contains the StaPro manual page which includes a detailed description of all user-
parameters.

NAME

StaPro - Station Processing

SYNOPSIS
StaPro [getpar(3) argument list]

DESCRIPTION

StaPro determines single station grouping and phase identification of seismic detections recorded at
three-component and array type stations.

StaPro is written in C integrated with CLIPS and is very quick. It is run on one station at a time.
StaPro can be run in a distributive environment allowing multiple stations to be processed
simultaneously.

Station dependent parameters can be tuned for each station as time permits. These parameters are
stored in individual parameter files allowing maximum control over every station.

The program consists of three main parts: initial wave-type, grouping and regional phase
identification. The default method of determining initial wave-type is by either the neural network or
a set of default rules. The neural network is used when station weights are available (see nnetweights-
file) otherwise, the default rules are used. Station specific rules (SSR), written in CLIPS by the user,
may be applied to supplement or override the default method (see section on Writing Station Specific
Rules below). Grouping is performed for teleseismic, local and regional phases with noise
detections being ignored. Phase identification for regional S phases is determined using Bayesian
analysis. Phase prediction determines the remaining phases.

The processing interval and station name must be given on the command line when StaPro is run
from the pipeline.

StaPro is designed to properly handle edge-effects when no adjacent data is available.

ARGUMENTS

CONTROL ARGUMENTS

sta is the station name. Required.

start-time is the processing start time. Required.

end-time is the processing end time. Default is start-time + duration.

duration is the duration of processing being requested.Default is 900 seconds (i.e., 15 minutes).

Page 46

DATABASE ARGUMENTS

database is the database name to be used. The arrival, apma, amp3c, arrival-aux, sbsnr, and
mag_coefs tables are read. The arrival, stassoc, assoc, origin, and origerr tables are written. A
database name is required.

arrival-table specifies a non-standard arrival table name. The station, time, arid, azimuth, delta
azimuth, delta time, phase, slowness, delta slowness, rectilinearity, period, amplitude and stassid are
read from this table. The iphase, stassid, auth, and lddate (UTC) fields are updated when processing
is completed. Also, the delaz, azimuth, delslo, and slowness is updated for three-component
stations. Default is “arrival”.

amp3c-table specifies a non-standard amp3c table name. The horizontal to vertical power ratios
(htov) are read from this table based on center frequencies (cfreq#) specified either from the neural
network weights file or by user parameters (if given). Otherwise, this table is not read. Default is
tﬂamp3c,9.

apma-table specifies a non-standard apma table name. The planarity (plans), short-axis incident
angle (inangl), long-axis incident angle (inang3), maximum to minimum horizontal amplitude ratio
(hmxmn), horizontal to vertical power ratio measured at maximum rectilinearity (hvratp#) and
horizontal to vertical power ratio measured at maximum amplitude (hvrat) are read from this table.
Default is “apma”.

arrival-aux-table specifies a non-standard arrival-aux table name. The fkqual and fstat are read from
this table. Default is “detection”.

sbsnr-table specifies a non-standard sbsnr table name. The short term average amplitude (stav) and
long term average amplitude (ltav) are read from sbsnr for the specified channel (see sbsnr-chan).
This is the preferred amplitude. The value for Itav represents noise in the magnitude calculation.
Default is “sbsnr”.

sbsnr-chan specifies the channel to be used when querying the sbsnr table to obtain a short term
average amplitude. If there is no preferred amplitude (stav) available then the arrival amplitude will
be used. Required.

stassoc-table specifies a non-standard stassoc table name. New tuples are inserted into this table once
processing is complete. Old stassids which were dissolved are deleted from this table. Default is
“stassoc”.

assoc-table specifies a non-standard assoc table name. Associated detections of confirmed events are
written here. Old orids are deleted from this table. Default is “assoc”.

origin-table specifies a non-standard origin table name. Confirmed event information is written here.
Old orids are deleted from this table. Default is “origin”.

origerr-table specifies a non-standard origerr table name. Location residuals for confirmed events are
written here. Old orids are deleted from this table. Default is “origerr”.

mag-coefs-table specifies a non-standard mag-coefs table name. Contains station dependent
magnitude correction coefficients by phase. Default is “mag-coefs”.

kaudit-table specifies a non-standard kaudit table name. Default is “kaudit”. This table is not used at
this time.

maxrec specifies the maximum number of records to be returned from the database. A warning
message will be printed if more records exist in the database. This value may need to be larger when
processing a long time window. Default is 500.

Page 47

vendor specifies the database vendor name. Default is oracle.

CLIPS RULE FILE ARGUMENTS

default-rule-files contain the default method of determining initial wave-type (see DESCRIPTION
above and WRITING STATION SPECIFIC RULES below). This is a CLIPS rules file. Default is
StaPro-IWT.clp.

sta-rule-file is a CLIPS file written by the user. It is used to either supplement or override the
default method of determining initial wave-type (see DESCRIPTION above). Optional.
INITIAL WAVE-TYPE ARGUMENTS

max-delslo is the maximum delta slowness. Default is 0.5 seconds/degree.

noise-fkqual-fstat determines phase to be noise if fkqual is greater than or equal to x and fstat is less
than y. Default is “5.0,3.0”

min-fkqual determines phase to be noise if fkqual is greater than or equal to x. Default is 5.

max-noise-velocity determines phase to be noise if velocity is less than or equal to x. Default is 2.9
am/second.

p-s-velocity-threshold determines phase to be S if velocity is less than or equal to x. Otherwise, phase
is assigned P. Default is 5.7 km/second.

min-teleseism-velocity determines phase to be T if velocity is greater than or equal to x. Default is
11.0 km/second.

min-p-rect determines phase to be P if rect is greater than or equal to x. Default is 0.7.

max-p-hvrat determines phase to be P if hvrat is less than or equal to x. Default is 1.0.

min-p-freq determines phase to be P if freq is greater than or equal to x. Otherwise, phase is assigned
T. Default is 3.0 Hertz.

nnet-weights-file holds the name of the neural network weights file which has historically been
called ipnnwts.tbl. This file contains weights for many stations. However, if no weights are found
for the station being processed then the default rules will be implemented to determine initial wave-
type. No default weights file specified. Optional.

nnet-log-file is written/overwritten each StaPro run if a filename is specified. It will contain a one
line report regarding all detections processed by the neural network. No default log file specified.
Optional.

site-file is filename and location of site file to be used. StaPro needs the station location and station
type from this file. It should be noted that the station type in this file may be different than that found
in the site database table. For example, the array ARAO should have 'hfa’ type in the site file whereas
'ss' will be found in the database table for the (3-component) station ARAO. Required.

def-3c-delaz is a default delaz to be used when the arrival.delaz is not valid. This is only for three-
component stations. Default is 20.0.

def-3c-delslo is a default delslo to be used when the arrival.delslo is not valid. This is only for three-
component stations. Default is 5.0.

ab-constant is a free-surface constant used in converting velocity to slowness. It's value is for a
poisson solid (e.g., air over rock) and is approximated by a/(2*b*b) where “a” is compressional
velocity and “b” is the S-wave velocity. Default is 0.3.

cfregl is the center frequency value used when measuring amplitude and is stored in the amp3c table.
The value of this first cfreq has historically been 0.25. Default is -999.0.

cfreq? is the center frequency value used when measuring amplitude and is stored in the amp3c table.
The value of the second cfreq has historically been 0.50. Default is -999.0.

cfreq3 is the center frequency value used when measuring amplitude and is stored in the amp3c table.
The value of the third cfreq has historically been 1.00. Default is -999.0.

cfreq4 is the center frequency value used when measuring amplitude and is stored in the amp3c table.
The value of the fourth cfreq has historically been 2.00. Default is -999.0.

cfreq5 is the center frequency value used when measuring amplitude stored in the amp3c table. The
value of the fifth cfreq has historically been 4.00. Default is -999.0.

PHASE GROUPING ARGUMENTS

group-first-s-p-max-time is the maximum time between first P and first S in grouping. Default is
360.0 seconds.

group-delaz-factor is used in compatibility tests in grouping. Default is 3.0.

max-grouping-time-no-azimuth is the maximum time after P that a compatible arrival allowed to
exist. Used when no azimuth data available. Default is 120.0 seconds.

min-grouping-amplitude-factor is the minimum ratio of S to P amplitudes for compatibility test.
Used when no azimuth data available. Default is 0.4.

max-grouping-amplitude-factor is the maximum ratio of S to P amplitudes for compatibility test.
Used when no azimuth data available. Default is 25.0.

group-amplitude-tolerance is a threshold ratio for compatibility test. Used when azimuth data is
available. Default is 40.0.

local-max-s-p-time determines an event to be local if the S-P time is less than x. Default is 25.0
seconds.

local-delaz-factor is used in compatibility test for local events. Default is 2.5.

local-min-p-p-separation is a time separation argument where the first P of a local event must be this
many seconds from any previous, compatible P. Default is 25.0 seconds.

max-p-coda-arrival-time is the maximum time a P coda phase can exist with respect to the first P.
Default is 20.0 seconds.

teleseism-group-max-width is the maximum time between first and last teleseismic phases of same
group. Default is 30.0 seconds.

teleseism-azimuth-tolerance is the maximum azimuth difference between arrival and first T. Used
during teleseismic compatibility test. Default is 25.0 degrees.

max-rg-time is the maximum time after P for a phase to be called Rg. Used in largest S analysis.
Default is 65.0 seconds.

min-lg-frequency determines phase to be Lg if frequency is greater than or equal to x. Otherwise,
phase is assigned Rg. This argument is also used in Regional Phase Identification. Default is 1.54
Hertz.

group-s-p-time-factor times S-P defines the window where additional S arrivals are considered to be
compatible with the group. Default is 2.1.

Page 49

REGIONAL PHASE ID ARGUMENTS

bayes-file contains Bayesian probabilities for regional S wave-types for several stations. Default is
“bayes.tbl”.

phase-distance-file contains limits on distance and depth for specified phases. Default is
“phase-distance-ranges.txt”.

tt-tables-path is the path and prefix for the travel time tables. A typical path is “/prj/shared/ops/data/
tab/tab”.

Required

tt-phases is a list of travel time tables (by suffix) to be loaded. Default is “’P',’Pn’,Pg','S",'Sn",'Lg', Rg".
s-split-parm is used to define first S of two S-context for Bayesian analysis. Default is 0.4.

min-sn-p-time is used in Bayesian analysis to see if S is too close to be called Sn. Default is 60.0
seconds.

sn-confidence-threshold is the minimum Bayesian probability for the Sn phase. Default is 0.5.

regional-min-s-p-time is the S-P threshold used in Bayesian analysis to categorize context of P phase
as either regional P or intermediate P. Default is 30.0 seconds.

pg-tol is the largest residual allowed between predicted and observed arrival times to be considered
Pg. Default is 3.0 seconds.

lg-tol is the largest residual allowed between predicted and observed arrival times to be considered
Lg. Default is 5.0 seconds.

rg-tol is fhe largest residual allowed between predicted and observed arrival times to be considered
Rg. Default is 5.0 seconds.

lg-min-velocity is the minimum velocity of Lg. Default is 3.1 km/second.
Ig-max-velocity is the maximum velocity of Lg. Default is 5.0 km/second.
rg-min-velocity is the minimum velocity of Rg. Default is 2.8 km/second.
rg-max-velocity is the maximum velocity of Rg. Default is 3.7 km/second.

EVENT CONFIRMATION ARGUMENTS

semi-major-axis-threshold is the maximum allowable value for the location error ellipse. Default is
400000.0 kilometers.

event-confirmation-threshold is the minimum weighted count for a confirmed event. Default is 2.6.

primary-time-weight is a weight applied to the number of primary time attributes during the weighted
count equation. Default is 1.0.

secondary-time-weight is a weight applied to the number of secondary time attributes during the
weighted count equation. Default is 0.7.

array-azimuth-weight is a weight applied to the number of azimuth attributes during the weighted
count equation. This weight is for an array station. Defanlt is 0.5.

array-slowness-weight is a weight applied to the number of slowness attributes during the weighted
count equation. This weight is for an array station. Default is 0.5.

3c-azimuth-weight is a weight applied to the number of azimuth attributes during the weighted count

Page 50

equation. This weight is for a three-component station. Default is 0.25.

3c-slowness-weight is a weight applied to the number of slowness attributes during the weighted
count equation. This weight is for a three-component station. Default is 0.25.

DEBUG ARGUMENTS

verbose controls the level of detail of messages printed to screen regarding station processing. Values
range from 0 to 5. Zero meaning less detail and three meaning more detail. Default is 1.

locator-verbose controls the level of detail of messages printed to locator-outfile-name regarding the
locator (used during phase prediction). Values range from 0 to 4. Zero meaning less detail and four
meaning more detail. Default is 0.

locator-outfile-pame will contain locator messages constrained by locator-verbose flag. Default is
“StaPro_loc.err”.

auditing-level is not currently used.
log-file is not currently used.

INPUTS

DATABASE

The following tables are read: arrival, amp3c, apma, arrival-aux, sbsnr and mag-coefs.

FILES -

The following files are read: bayes.tbl, phase-distance-ranges.txt, travel time tables, site file,
ipnnwts.tbl, StaPro-IWT.clp, and station specific rules (if provided).

OUTPUTS

DATABASE

The following tables are written: arrival, stassoc, assoc, origin, and origerr.

FILES

The following files are written (if requested): neural network log file and locator log file.

WRITING STATION SPECIFIC RULES

SSRs are written in CLIPS. Each rule has two parts consisting of a left-hand side (LHS) where
conditional elements are listed, and a right-hand side (RHS) where actions are listed. An arrow
(“=>") separates the LHS from the RHS. The analogy of the common If-Then statement applies to
CLIPS rules. All conditions listed on the LHS must be met before actions on the RHS can begin. All
SSRs for StaPro must contain (program-state ssr-initial-wave-type) as a conditional element. This
will ensure proper processing flow of the rules. In addition, at least one of the rules must contain the
action which summarizes the overall completion status for the SSRs. This is done by placing (status
0l1) on the RHS. A status of 1 represents satisfactory completion whereas O is unsatisfactory. SSRs
which determine a valid initial wave-type should assert this information on the fact list as (phase
PITISIN). The SSRs which can not determine a particular phase can pass-on information to the default

Page 51

rules to exclude a particular phase. The excluded phase should be asserted on the fact list as (not-t),
(not-p), (not-s), or (not-n). See the default CLIPS rules file for examples of CLIPS rules. Also, see
the CLIPS Reference Manual for details regarding rule creation.

The following are three categories of facts which are asserted on the CLIPS fact list for each
detection. These facts and the functions listed below are available for use during SSRs.

CONTROL FACTS
iwt-not (not-p 0) (not-t 0) (not-s 0) (not-n 0) ;; set to FALSE
program-state ssr-initial-wave-type ;; when SSRs given
program-state initial-wave-type ;; when no SSRs given
use-default-rules ;> when no SSRs given
yes-wts ;; when neural network weights available
no-wts ;; when no neural network weights available
RDBMS FACTS
(by table)
ARRIVAL: station, time, arid, stassid, azimuth, delaz, slow, delslo, rect, per
APMA: plans, inangl, inang3, hmxmn, hvratp, hvrat
AMP3C: htov1, htov2, htov3, htov4, htov5
DETECTION: fstat, fkqual
SITE: statype
PARAMETER FACTS
min-p-rect
max-p-hvrat
min-p-freq
max-delslo

noise-fkqual-fstat
min-fkqual
min-teleseism-velocity
p-s-velocity-threshold

max-noise-velocity
FUNCTIONS AVAILABLE

Value Range Checkers:

The following range check functions return TRUE if ?value is in range. Otherwise, FALSE is
returned.

Page 52

check-rect-range (?value)

check-hvrat-range (?value)
check-per-range (?value)
check-slow-range (?value)
check-delslo-range (?value)
check-fstat-range (?value)

check-fkqual-range (?value)

Noise Screening:
Determines by fkqual and fstat if the arrival should be classified as noise. Returns TRUE or FALSE.

noise-screener (7fk ?minfk ?maxfk ?fs ?minfs)

Verbose Checker:

Checks level of verbose flag set by user parameter.
vchk4 ()

EXAMPLE:

The following is a typical par file which processes station “GAR”. It accesses the nnet9 database.
The start-time is specified as 679000000. The sbsnr channel is “sz0204”. The directory /prj/shared/
ops/data/iasp91/iasp91 holds the travel time tables. A beta site file is used for this station. StaPro
will try to use the neural network provided weights exist for this station in the file ipnnwts.tbl. The
Par_file follows:

StaPro Example Par File: GAR.par
Execution: StaPro par=GAR.par

clip_path=/home/StaPro/data
tbl_path=/home/StaPro/data/tables
tt_path=/data/tab

sta=GAR

start-time=679000000
end-time=679500000

verbose=3

max-delslo=999.9 # def=0.5

database=acount_name/password@t :machine:two_task
sbsnr-chan=sz0204

amp3c-~table=amp3c

apma-table=apma

arrival-table=arrival_stapro
arrival-aux-table=detection

sbsnr-table=sbsnr

stassoc-table=stassoc_stapro

tt-table-path=$(tt_path)

Page 53

bayes-file=$ (tbl_path) /bayes.tbl

site-file=$(tbl_path) /beta.site
default-rule-files=$(clip_path)/StaPro-IWT.clp
phase-distance-file=$(tbl_path)/phase-distance-ranges.txt
nnet-weights-file=$(tbl_path)/ipnnwts.tbl
nnet-log-file=$(sta)_nnet.log

AUTHOR

Rick Jenkins

Geophysical Systems Operation

Science Applications International Corporation
San Diego, California

Page 54

Appendix B: GA Subsystem Parameter Descriptions

This appendix lists descriptions of the user-parameters for GAcons and GAassoc. The user-input
to both programs is through command-line arguments. These arguments can be stored in a
“parameter file,” and the name of the file is specified on the program command-line (e.g., GAcons
par=GAcons.par).

GAcons User-Parameters

phases:
List of phases for which to compute grid cell - station information.

net:
Network name.

output_path:
Directory path name where output file(s) will reside.

output_prefix:
Prefix name for output file(s) containing the information for each sector. This overrides the default
prefix.

nevents:

Number of events with magnitude between min_mag and max_mag to use in simulations to
determine first-arrival stations. These events will have to be detected at least at nstat_det stations
to be considered valid events for this purpose. As many events as necessary are simulated until
nevents are detected at nstat_det stations.

percent:
Percentage of the total number of events simulated within a grid cell to have first arrival at station

for that station to be considered a first arrival station.

nstat_det:
Number of stations required for an event to be considered valid for the simulation.

grid_spacing:
Grid spacing in degrees for the approximately uniform grid on the sphere.

min_mag:
Minimum magnitude for event simulations.

max_mag:
Maximum magnitude for event simulation.

Page 55

aften_file:
Name of attenuation file, including path.

table_path:
Directory path name to travel time tables.

num_sects:
Number of sectors to divide the sphere into (for parallelization purposes). This also determines
the number of files generated by GAcons.

vendor:
Name of the database vendor (e.g., “oracle”).

database:
Name of the database where to find network information.

account:
Database account name.

maxrecs:
Maximum number of records to read from the database.

event_file:.
Name of the file containing the seismicity data used in establishing the depth cells.

min_num_events_per_10sq_deg:
Minimum number of events in a 10 degree square and the depth interval corresponding to the
depth cell for that cell to be taken into consideration.

depth_points:
Depth in kilometers of center of depth cells.

depth_widths:
Width in kilometers of depth cells.

dist_depth_range_file:
Name of the file containing information about the range of definition in distance and depth of seis-
mic phases.

Sample GAcons parameter file:

vendor="oracle”
database="t:machine:two_task”
account="account_name/password”
output_path="/home/ga/SDG/"”
maxrecs=10000

Page 56

grid_spacing=3.

num_sects=1

net=GSETT3

percent=1

nevents=200

nstat_det=2

min_mag=3.

max_mag=5.

atten_file="slowamp.P”

table_path="/data/tab”
phases="pPn, PKPAf, P, Lg, S, PcP”
event_file="/home/ga/data/1980-1993.pde_depths”
min_num_events_per_10sg _deg=1
depth_points=765.0,130.0,240.0,400.0,650.0"
depth_widths=732.0, 40.0, 80.0,100.0,150.0"
dist_depth_range_file="/home/ga/data/GA_dist_depth_ranges”

GAassoc User-Parameters

Database interface parameters.:

vendor: :
Name of the database vendor (e.g., “oracle”).

database:
Name of the database for input arrival table and output assoc, origin, origerr tables.

account.
Database account name.

maxrecs:
Maximum number of records to read from the database.

in-arrival-table:
Name of the input arrival table. The detections to be associated are read from this table. Station
processing should be run on the detections before using GAassoc.

in-assoc-table:

Name of the Input assoc table. The belief field from this table is read for each arrival. It is also
used to screen arrivals associated with local events with ML magnitude less than a user-specified
value.

in-origin-table:

Name of the input origin table. This is used to screen local events with ML magnitude less than a
use-specified value.

Page 57

in-origerr-table:
Name of the Input origerr table associated with the input origin table.

out-origin-table:
Name of the output origin table. This will contain the origin records for the preliminary events
formed by GAassoc.

out-assoc-table:
Name of the output assoc table. This table contains the assoc¢ records associated with the pre-

liminary events formed by GAassoc.

out-origerr-table:
Name of the output origerr table. This table contains the origerr records associated with the pre-
liminary events formed by GAassoc.

net:
Name of seismic network (e.g. GSETT3).

minimum_ml|_previously._determined:.

Minimum local magnitude of events whose arrivals will be tentatively associated by GAassoc.
Arrivals that have been associated by station processing with local events of magnitude less than
this value are not considered for association.

input_path:
Path name to the directory where the input grid file produced by GAcons is located.

input_file:
Name of input grid file produced by GAcons. This file contains the grid information to be used by
GAassoc in the forming of preliminary events. This file name must be specified.

table_path:
Path name to travel time and magnitude tables directory.

atten_file:
Path name and file name for the attenuation tables used for probability of detection calculations.

mb_dist_depth_suffix:
Suffix for mb tables.

Association loop parameters:

start_time:
Epoch time of the starting time for analysis.

end_time:
Epoch time of the end time for analysis.

lookback:

Time in seconds before the start time to include in the analysis. Events with origin time between
start_time-lookback and end_time-lookback are considered in the analysis. Arrivals between
start_time-lookback and end_time are read and considered in the analysis.

belief_threshold:
Threshold value for the belief field in the arrival table. If the belief (assigned by StaPro) is above
this threshold then the phase identification cannot be changed by GAassoc.

phases:
Names of phases to be used in the association. This must be a subset of the phases used in

GAcons.

primary_phases:
Names of phases to be considered “primary” phases.

num_first_sta:
Maximum number of “first-arrival stations” to use from the grid file produced by GAcons. The
stations are ordered with the highest probability station first.

count_limit:
The preliminary events are examined when count_limit of them have been formed and redun-
dancy analysis, event splitting and event confirmation are performed.

freeze_arrivals_at_beam_points:

If this string is present in the parameter file, arrivals will be frozen at each beam point once asso-
ciated with a preliminary event. If this string is not present in the parameter file no freezing is per-
formed.

primary_required_for_secondary:

If this string is present in the parameter file, an arrival can be associated to a preliminary event
only when there is a corresponding primary phase from the same station already associated to that
event.

regional_S_phases:

List of regional S phases. A regional P phase cannot be associated with a grid cell at teleseismic
distance if station processing grouped it with a compatible S phase in the list of regional_-
S_phases.

forward_transformation_list:

For each phase identified by station processing, this list restricts the phase type that it can be trans-
formed into by GAassoc.

Page 59

sigma_time:

Sigma factor for time measurement uncertainty. This factor is multiplied by the deltim standard
deviation to determine the interval for the preliminary screening done during the search for cor-
roborating phases.

sigma_slowness:
Sigma factor for slowness measurement uncertainty (see the sigma_time description).

chi_limit.

Threshold value for the chi-square test. This is used within the association loop to determine if a
corroborating arrival belongs to a preliminary event formed by a DRIVER arrival. A typical value
is 0.99.

probdet_before_location:
If this string is present in the parameter file, a network probability test is performed prior to loca-
tion.

redundancy._required:
If this string is present in the parameter file, a complete redundancy test is performed after the

association loop. This is done in the normal operating mode.

Optional processes parameters:

location_required:
If this string is present, the locator module is invoked.

probdet_after_location:
If this string is present in the parameter file, a network probability test is performed after location.

residual_over_sigma_max:

Maximum value of the ratio of the residual of the network probability value to the estimated stan-
dard deviation. This parameter is used in both probability of detection tests (before and after loca-
tion). A typical value is 3.

max_obs_net_prob:

Maximum number of observations above which no probability of detection test is applied. This
value and the value of the residual_over_sigma_max parameter are used by both the pre-loca-
tion and post-location probability of detection tests.

Location and confirmation module parameters:

loc_conf _level:
Locator confidence level. This is the confidence level at which the location error ellipse is com-

puted.

Page 60

loc_verbose:
Verbose value for the locator. Refer to the locator documentation for options.

loc_fix_depth:
If this string is specified, the locator keeps the depth fixed.

chi_outlier:

Chi-square threshold value used in the post-location outlier analysis within the locator module.
This value is used to determine whether an arrival is an outlier for a particular event and to discard
it from the preliminary event it if it is the worst outlier.

max_smajax:
Maximum permissible semi-major axis of the location error ellipse. This is one of the confirma-
tion criteria for a preliminary event.

req_num_of_defining_detections:
Minimum number of detections for an event to be confirmed.

weight_threshold:

Minimum “weight” of an event for it to be confirmed. This is compared to the sum of all weights
for the defining observations forming the event (see primary_time_weight, secondary_time_-
weight, array_azimuth_weight, array_slow_weight, 3comp_slow_weight, 3comp_azi-
muth_weighf). This weighted-count confirmation test is described by Bratt et al. [1991, 1994].

primary_time_weight:
Weight assigned to arrival times for primary phases for the weighted-count event confirmation
test [Bratt et al., 1991, 1994].

secondary_time_weight
Weight assigned to arrival times for secondary phases for the weighted-count event confirmation
test [Bratt et al., 1991, 1994].

array_azimuth_weight:
Weight assigned to array azimuths for the weighted-count event confirmation test [Bratt et al.,

1991, 1994].

array._slow_weight:
Weight assigned to array slowness for the weighted-count event confirmation test {Bratf et al.,

1991, 1994].
3comp_slow_weight:

Weight assigned to slowness from 3-component data for the weighted-count event confirmation
test [Bratt et al., 1991, 1994].

Page 61

3comp_azimuth_weight
Weight assigned to azimuth from 3-component data for the weighted-count event confirmation
test [Bratt et al., 1991, 1994].

Sample GAassoc parameter file:

vendor="oracle”

database="t :machine:two_task”

account="account_name/password”

maxrecs=200000

in-arrival-table="arrival”

in-assoc-table="assoc”

in-origin-table="origin”

in-origerr-table="origerr”

out-origin-table="origin_ga”

out-assoc-table="assoc_ga”

out-origerr-table="orrigerr_ga”

minimum_ml_previously_determined=2.5

atten_file="slowamp.P”

table_path="/data/tab”

mb_dist_depth_suffix="pfact”

input_path="/home/ga/SDG"

input_file="GSETT3.spacing3.sector.-180deg.to.180deg”

num_first_sta=5

count_1imit=10000

forward_transformation_list=" (P PKPAf Pdiff Pn S ScP PKPab PKPbc
PP ScS), (S Rg Sn Lg), (Pn P Pg Pdiff S ScS), (Lg Sn Rg), (Sx Sn
Lg Rg S ScS), (Tx PcP PKPbc PKPab), (Rg Lg), (Sn Lg S)”

phases="Pg, Pn,P,Pdiff, PKPdf"”

primary_phases="P, PKPAdf,Pn, Pg,Pdiff”

freeze_arrivals_at_beam_points

primary_required_for_secondary

regional_ S_phases="Sn,Lg,Rg, Sx”

sigma_time=3.

sigma_slowness=3.

start_time=789004800.

end_time=789033600.

chi_limit=.99

#

#optional processes parameters

#

#probdet_before_location

location_required

redundancy_required

probdet_after_ location

#

Page 62

#location parameters

#

loc_conf_level=0.90
loc_verbose=0

loc_fix_depth

chi_outlier=.99

#

Event confirmation criteria
#

max_smajax=500.0
residual_over_sigma_max=3.
max_obs_net_prob=10

reqgq num_of_defining detections=3
weight_threshold=3.9
primary_time_weight=1.0
secondary_time_weight=1.0
array_azimuth_weight=0.25
array_slow_weight=0.25
3comp_slow_weight=0.0
3comp_azimuth_weight=0.0

Appendix C: EServer/ESAL Parameter Descriptions

Most of the details of ESAL processing are controlled by configuration parameters set at run-
time. In this section we list the parameters that have been added to allow processing of GAassoc
hypotheses with a brief definition. The convention is:

PARAMETER-NAME:
Definition.

GA-ORIGIN-FILENAME:

This specifies the file name for origin data (i.e., origin relation) for GA preliminary events. It will
be sought in the directory formed by the concatenation of DATA-PATHNAME and DETEC-
TION-PATHNAME. The value must be a string.

GA-ORIGERR-FILENAME:

This specifies the file name for origin error data (i.e., origerr relation) for GA preliminary events.
It will be looked for in the directory formed by the concatenation of DATA-PATHNAME and
DETECTION-PATHNAME. The value must be a string.

GA-ASSOC-FILENAME:

This specifies the file name for association data (i.e., assoc relation) for GA preliminary events. It
will be sought in the directory formed by the concatenation of DATA-PATHNAME and DETEC-
TION-PATHNAME. The value must be a string.

GA-CONFLICT-RESOLUTION-HEURISTIC:

This specifies which heuristic to use for resolving multiple-association conflicts during GA trial
origin formation. If the heuristic is ERROR-ELLIPSE-AREA, a phase will be associated with
the preliminary event with the smallest error-ellipse area. If the heuristic is NUMBER-OF-
DEFINING-PHASES, a phase will be associated with the preliminary event with the largest
number of defining phases; ties are broken by the smaller error-ellipse area. If the heuristic is
REVISED, conflicts are resolved based on an ordered list of criteria including: defining vs. non-
defining, firm-association vs. weak-association, number of defining-components, and error-ellipse
area; this is essentially the same heuristic used during regular conflict resolution if the selected
heuristic is REVISED (cf. CONFLICT-RESOLUTION-HEURISTIC). If the heuristic is
REVISED-NDEF, a phase will associated with the preliminary event with the largest number of
defining phases _but_ the conflict resolution will be ordered starting with the best preliminary
event and each loser of a conflict resolution will have its number of defining phases revised before
the next conflict is resolved. The value must be one of: ERROR-ELLIPSE-AREA, NUMBER-
OF-DEFINING-PHASES, REVISED, REVISED-NDEF.

GA-ORDERING-PARAMETER:

This specifies the parameter that will be used to order the selection of GA preliminary events as
trial origins. The value must be one of: ORIGIN-TIME, NUMBER-OF-DEFINING-DETEC-
TIONS, BODY-MAGNITUDE.

Page 64

INITIAL-GA-GOAL:

This index specifies the first goal out of GOAL-ORDER to be used in the construction of GA
working origins. The value should be a number between 1 and the length of GOAL-ORDER.
This allows GA preliminary events to be treated as partially formed and not have to go through
the early goals. The value must be an integer.

MAX-STATIONS-FOR-PROBDET-CE-TEST:
The probdet network-likelihood event confirmation test is only applied to events detected at fewer
than this number of stations. (cf. PROBDET-CE-THRESHOLD). The value must be an integer.

PROBDET-CE-THRESHOLD:

An event will be confirmed only if the probdet network-likelihood is close enough to its expected
value. Specifically, (A-B)/C < threshold, where B is the log of the network likelihood, A is its
expected value, C is the square root of the variance of the expected value, and threshold is this
parameter. The log of the network likelihood is: Z(kldetecting stations) log p(k) + Z(klnon-detect-
ing stations) log (I-p(k)), where p(k) is the probability of detection times the station reliability
times PROBDET-RELIABILITY-FACTOR. This test is only applied to events detected at fewer
than MAX-STATIONS-FOR-PROBDET-CE-TEST stations. The value must be a number.

PROBDET-RELIABILITY-FACTOR:
This specifies a factor which multiplies the station reliability used in the probdet network-likeli-
hood event confirmation test. (cf. PROBDET-CE-THRESHOLD). The value must be a number.

New EServer parameters for use with GA input:

write_ga_files:
Causes EServer to include GA origin, origerr, and assoc files as esal input.
Default = nowrite_ga_ files

ga_origin:
Specifies the name of the table to use for GA origin.
Default = ga_origin.

ga_origerr:
Specifies the name of the table to use for GA origerr.
Default = ga_origerr.

ga_assoc:
Specifies the name of the table to use for GA assoc.
Default = ga_assoc.

ga_arrival:

Specifies the name of the table to use for GA arrivals.
Default = arrival.

Page 65

Distribution List

AFTAC/TTR Technical Report (2 copies)
AFTAC/TTS Technical Report (1 copy)
CA/STINFO Technical Report (2 copies)

